Looking to buy? See our books on amazon.com Get Reading Now! Age of Aces Presents - free pulp PDFs

“At Target 808″ by O.B. Myers

Link - Posted by David on February 16, 2024 @ 6:00 am in

THIS week we have a story from the pen of a prolific pulp author O.B. Myers! Myers was a pilot himself, flying with the 147th Aero Squadron and carrying two credited victories and awarded the Distinguished Service Cross.

Bat Armstrong and Chuck Pearce were tired of réglage work in an old Sopwith behind enemy lines. But when a new, speedy S.E.5 is stolen, they manage to prove it’s not how fast your ship is, but knowing where you are—and hopefully that’s not “At Target 808!” From the pages of the January 1933 number of Flying Aces!

Down upon that swiftly moving Fokker dived the ancient Sop Strutter—and the Fokker fled. But those two Yanks should have guessed that tohen a speedy German scout ran from a clumsy observation crate, danger lay ahead—a danger greater than Spandau bullets!

How the War Crates Flew: Flying Comfort

Link - Posted by David on June 13, 2023 @ 6:00 am in

FROM the pages of the December 1933 number of Sky Fighters:

Editor’s Note: We feel that this magazine has been exceedingly fortunate in securing R. Sidney Bowen to conduct a technical department each month. It is Mr. Bowen’s idea to tell us the underlying principles and facts concerning expressions and ideas of air-war terminology. Each month he will enlarge upon some particular statement in the stories of this magazine. Mr. Bowen is qualified for this work, not only because he was a war pilot of the Royal Air Force, but also because he has been the editor of one of the foremost technical journals of aviation.

Flying Comfort

by Robert Sidney Bowen (Sky Fighters, December 1933)

SO! SOUND asleep, the lot of you, eh? Well, my pin-feathered buzzards, that suits me just fine. In fact, it’s perfect. It gives me an idea of what to chin about this time. For a week I’ve been lying awake nights, tearing out my hair, wondering what I could talk about that would be close to your dear little hearts, and which you’d all understand.

Well, you yourselves gave me the idea. What subject could you better understand than one dealing with comfort?

And so, I will proceed to raise my usually calm and soothing voice above the stentorian chorus of snores, and bellow at you about the art of flying comfort.

We Were Comfortable

Though it breaks my heart to reveal the truth, my conscience forces me to draw aside the veil and show just how comfortable we baldheaded eagles were in the days when the word German was something that made you jump and jump fast.

As your big sisters have probably told you, wartime airdromes were never located in the middle of No-Man’s-Land. In fact, they were usually fifteen to twenty miles behind the lines. Such being the case, we had no fears of waking up and finding German infantrymen plowing through the room. And so, we could add the old home sweet home touch to our abodes and know that it would all still be there when we got back from a gallant patrol.

Sure! We had hutments to live in, blankets and clean sheets. A mess lounge to get plastered in, too. True, the furniture was not all mahogany or birdseye maple. However, it didn’t fall apart, much. And most important of all, my dears, the grub was good. It wasn’t dropped in the mud, and it was cooked (by a cook) in a real stove. There was usually some sort of a piano that worked. And, of course, the ever-present phonograph.

Now, before I mislead you too much, let me explain that the pilots more or less enjoyed solid comfort only as compared to the men holding the line.

I COULD name lots of places that are heaven compared to a wartime airdrome, and not even exaggerate. So, just keep it in your think-box that I’m speaking of flying comfort as compared to infantry or artillery comfort.

Visiting the Neighbors

And so, we were able to install all the little things that helped to make life enjoyable when not in the air. Usually there was a village near-by, with at least one worthwhile estaminet where we could go between patrols or any time when we were off duty. Also, if the field was big enough, more than one squadron used it, with the result that you had neighbors to visit, etc.

IN OTHER words, while an airman was on the ground, it really was a pretty good war.

In the air, though, it was different. And naturally so, because for us, that’s where the war was—in the air.

But here’s the point—we didn’t confine all our efforts for comfort to the time when we were on the ground. We took it along with us when we went up, providing, of course, it didn’t interfere with air scrapping.

That, of course, was the one essential thing to think about. And as a result, the comfort that we tried to get in the air was in reality a type of comfort that actually helped air performance.

Just a Few Examples

For a few examples of what I mean, unbutton your ears to these.

Straight flying—ordinary patroling between two points—is about the most monotonous thing east or west of the Seven Seas. There’s nothing to do but sit and fly, and then sit and fly some more. On a smooth day your legs and arms and neck get so doggone cramped, that you suddenly’ find yourself praying aloud for a flight of enemy ships to drop down on you.

True, you’ve got to keep your eyes open, to spot said enemy ships ahead of time.

And also you’ve got to keep on the alert so that you won’t slide out of formation position. But after awhile at the Front that sort of thing becomes almost mechanical. Like a sixth sense, you might say.

To permit themselves the opportunity to relax, some of the boys had headrests fitted to the top of the fuselage just back of the cockpit. The headrest was just a leather pad streamlined into the top of the fuselage. On some ships, the S.E.5, for example, the headrest was already there. And to show you how queer war pilots can be, some of the guys had the headrest of their S.E.5
taken off, because they said it cramped their necks! (See Fig. A.)

Every Little Thing Counts

ANOTHER little thing that we added for comfort’s sake, was a little box fitted to a fuselage crossbrace inside the cockpit. In ships that had a Lewis gun mounted on the top center section, the box was already there. That is, there were two boxes in which you carried a couple of spare Lewis drums of ammo. So you simply carried one extra drum—and the other was your box.

What for? Why, to keep things in, dummy. What things? Well—that depended upon the pilot’s likes and dislikes. Me, I used to slip a couple of bars of chocolate in, a cloth with which to wipe oil spatterings off my goggles, a couple of nips of this and that in a flask (in case of a cold, you understand), a picture of the current girl friend to gaze at if I felt lonely, a box of matches, and at least one deck of cigarettes.

Cigarettes?

Ah, I knew darn well that buzzard over there in the corner wasn’t asleep! Sure, we carried cigarettes. Why not? No, not to smoke while we were in the air. Nix! Can do, as a stunt. But didn’t as a regular practice.

No, the idea was, in case we got forced down and taken prisoner. Yes, sir, we were that way. Made sure of our comfort—in case. And if you think that’s a funny idea, go get yourself taken prisoner some day, and find out how many smokes the enemy gives you! Yeah, you’!I learn!

If We Were Captured

AND speaking of being taken prisoner. Some of the lads used to sew a small compass and a map or two in the lining of their flying suits. I once heard of a case where that little stunt was the means of a bird escaping an enemy prison camp. Well, all I can say is, that guy sure was lucky, and then some!

In the first place, the enemy wasn’t as dumb as the newspapers try to make them out to be. They knew a few things about fighting a war just as we did.

And searching a captured prisoner for anything that might help or hinder him was something that the Germans did nothing else but. However, for argument’s sake, let’s say that the searching officer was blind in one eye, couldn’t see out of the other, and both hands were cut off. Well, the hero goes to a prison camp, tells the guard to look the other way, and sets off for home. He uses the compass and starts south. Soon it gets darn cold and he meets an Eskimo. Heavens, he’s been walking all these weeks in the opposite direction.

And why? Because that little compass sewed in his flying suit was long ago sent haywire by the metal and ignition system of his engine.

But to get back to that box—comfort box, you could call it—I’ve told you a few of the things I used to lug along. Other guys used to carry other things. One chap, for instance, used to take along pen, paper and envelopes. Sure! Do his letter writing while waiting for action.

No Identification!

However, that was just an unusual stunt. Don’t get the idea that it was general practice. And also don’t get the idea that the box was big enough to hold a couple of spare props and
a tire maybe. And also, take it from me, you did not carry anything that would be valuable to the enemy if captured. I carried the girl friend’s picture, but I didn’t carry any of her letters to me.

No, smart guy, not because I was afraid the ship would catch fire! Simply because they were identification, and might contain information of something seemingly unimportant, but perhaps most important when pieced together with what the enemy might already know.

In other words, we carried in the box, or on our person, nothing that would divulge information to the enemy.

I Call It Laziness

MAYBE you’d call this next item comfort, but I call it just plumb laziness. It was a flight leader’s trick. As you know, a flight leader has to keep his eye on the ships back of him, just as much as the other lads have to keep their eyes on him.

So this bird, in order to save wear and tear on his neck, got hold of a piece of looking glass and fastened it near the top of his right rear center section strut. Yup, a rear view mirror for airplanes. And believe it or not, the thing worked swell—so he claimed! (See Fig. B.)

Another idea for comfort, and a thing that was mighty useful in a dog scrap, was a pair of shoulder straps fastened to the sides of the cockpit seat. (See Fig. C.) As you know, every ship had the regular safety belt that fastened about your waist. That was okay for level flight, but should you get hung in a loop, gravity would start to slide you out and pull your feet off the rudder bar.

So we installed two straps; one that came up the back and over the right shoulder and down the left side of the seat, and the other came up over the left shoulder, crossed the other at your chest, and down to the right side of the seat. Thus you were held back by the safety belt, and held down on your seat by the double straps. Naturally, snap fastenings were used, in case you had to get clear fast—like in thr event of a forced landing.

It’s All How You Look At It

Yup, our motto was, comfort east or west of No-Man’s-Land. Of course, it wasn’t like home. We did get our feet wet now and then. However, in case the Grim Reaper ever reached out for us, we kind of planned it so we’d at least die on a full stomach. For the lads on the ground shoving about the trenches, such was not the case. They had to take it on the chin day and night.

Yet, after all, it’s the way you look at it. The doughboy in the trench looks up at the aviator and says, “Cripes, that damn fool up there with nothing to hang onto!” And the pilot looks down and says, “Cripes, that damn fool down there with nothing but mud to sit on!” And, so what? As far as I’m concerned, it’s, so long!

Strange War Ships: Deperdussin Monoplane

Link - Posted by David on June 5, 2023 @ 6:00 am in

FOR FOUR successive months in 1933, War Birds ran a series of covers featuring “Strange War Planes.”—those freak planes that were used during the First World War. The covers were by Eugene M. Frandzen—known here for the covers he did for Sky Fighters from its first issue in 1932 until he moved on from the pulps in 1939. The Final freaky ship in the series was the Deperdussin Monoplane!

Strange War Ships:
Deperdussin Monoplane

th_WB_3309BEFORE synchronization of machine gun fire was perfected, many strange ways were devised to fire in the direction of flight. The Deperdussin Monoplane, with machine gunner mounted atop the wing was one of these. A rudder attachment kept the gun from whipping from side to side. The ship was armoured and a superstructure of steel pipes formed the gunner’s cockpit. A gunner on this ship had to have a sense of balance equal to an acrobat to be accurate with the gun.

The Deperdussin was the forerunner of the 5pad. This ship and the single place were used extensively on the Russian front. Germany, at that time, considered these ships the most dangerous used by the allies. The single seater had the phenomenal speed of 131 m.p.h. when stripped.

LENGTH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .24′
SPAN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36′3”
AREA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226 sq.ft.
WEIGHT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1050 lbs.
MOTOR . . . . . . . . . . . . . . . . . . . . . . . . . . . . .80 h.p. Gnome
SPEED . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .105 m.p.h.
CLIMB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .247 ft.per min.

Strange War Ships: Deperdussin Monoplane
Strange War Ships: Deperdussin Monoplane • War Birds, August 1933
by Eugene M. Frandzen

Strange War Ships: Spad Tractor-Pusher

Link - Posted by David on April 24, 2023 @ 6:00 am in

FOR FOUR successive months in 1933, War Birds ran a series of covers featuring “Strange War Planes.”—those freak planes that were used during the First World War. The covers were by Eugene M. Frandzen—known here for the covers he did for Sky Fighters from its first issue in 1932 until he moved on from the pulps in 1939. The third in the series was the Spad Tractor-Pusher.

Strange War Ships:
Spad Tractor-Pusher

th_WB_3308THIS was one of the freakiest ships of the war, presenting the diverting 5pectacie of pilot and gunner in the same ship but separated by the whirling propeller.

Before the days of the front fire fokker engineers and pilots were dreaming of a device which would enable them to fire a machine gun in the direction of flight. The existing pushers permitted this but they were being replaced by tractors with their higher performance. The pilot wanted to take his front fire gun with him from the pusher to the tractor, but synchronization was unheard of then.

The result was as pictured on the cover and in this sketch. Sechereau, the designer, took the standard Spad tractor with 150 h.p. hisso and suspended a nacelle before the prop by a pair of members which formed part of the undercarriage.

The ship flew and was being considered for military use when the Fokker Eindecker came out. Naturally this type of ship became obsolete immediately.

Strange War Ships: Spad Tractor-Pusher
Strange War Ships: Spad Tractor-Pusher • War Birds, August 1933
by Eugene M. Frandzen

What is next month’s strange ship? Check back again for pictures and complete data on another freak ship of the war!

How the War Crates Flew: Things to Inspect

Link - Posted by David on April 18, 2023 @ 6:00 am in

FROM the pages of the November 1933 number of Sky Fighters:

Editor’s Note: We feel that this magazine has been exceedingly fortunate in securing R. Sidney Bowen to conduct a technical department each month. It is Mr. Bowen’s idea to tell us the underlying principles and facts concerning expressions and ideas of air-war terminology. Each month he will enlarge upon some particular statement in the stories of this magazine. Mr. Bowen is qualified for this work, not only because he was a war pilot of the Royal Air Force, but also because he has been the editor of one of the foremost technical journals of aviation.

Things to Inspect

by Robert Sidney Bowen (Sky Fighters, November 1933)

A WHILE back I told you buzzards a few things about knocking engines. In other words, some reasons why the engines of the old war crates used to pass out oil us now and then, and sort of leave us in the soup. Well, today I’m going to talk about things that could happen to the plane, and likewise put us in the soup.

I believe I’ve only mentioned this fact about seven million times, so I’ll just say it again—taking good care of your ship was about fifty percent of the war pilot’s job. Now, when I say, taking good care of your ship, I don’t mean being easy with it when you’re in a dog scrap. At a time like that it’s a case of your life or the other chaps, and naturally you have to take a lot of chances that you wouldn’t take if you were just buzzing around on a little joy hop. And when I speak of taking a lot of chances I mean forcing your ship to execute maneuvers that it may not be able to stand—and as a result, tear itself apart in mid-air.

Good Pilots Don’t Take Chances

But here’s the point—good pilots didn’t take chances with their ships! And why? Well, buzzards, for this reason. A good war pilot knew his ship from prop boss to tail skid. He knew from experience in the cockpil just what it would do, and just what it wouldn’t do. And how come he knew all that? For the simple reason that he cared for it as a mother would care for a new-born babe. And naturally enough! Gosh almighty, a war pilot’s ship was the difference between life and death for him.

But enough of that stuff. What we are chinning about right now, is what used to happen to war crates, and why it did happen.

Three Important Parts

GENERALLY speaking, there are three parts of an airplane that can fail and as a result cause a lot of trouble, to say nothing of causing the death of the pilot. And those three parts are, the wing fittings, the landing gear (undercarriage) and the controls. As I said in the beginning, we’ve already talked about the engine, so we’ll leave that very important part out of this meeting.

Okay, first the wing fittings.

In a biplane (and all pursuit ships at the end of the war were biplanes) there were at least four, and in many cases eight, wing fittings, or wing bolts as they were sometimes called. And if you want to count in the aileron bolts, that’s eight more.

Now just a minute, don’t get so doggone impatient. I know what you are going to ask. Just what is a wing fitting, eh? Well, a wing fitting, or wing bolt, or wing attachment bolt (all the same thing) is simply the bolt hinge by which a wing is fastened to something else.

Take the top span of a biplane, for example. It is made up of three parts. They are, the left top wing, the center section, and the right top wing. Now, the center section is solid.

BY THAT I mean it is attached to the fuselage by struts and cross bracing wires. But the left and right top wings are hinge bolted to it on their respective sides (Fig. 1). The inner end of the wing is a solid rib. (Not holed out for lightness like the rest of the ribs in the wing.) Into that solid rib is fitted the forward and rear spars of the wing. The same thing is true of the spars in the center section. So that makes re-enforced solid pieces coming together. In other words, something strong against which you can fasten the hinge fittings.

Hinge Fittings Varied

Now the hinge fittings varied in different types of ships. But the one used quite a lot was like the one in Fig. 2. As you can see, the two parts of the hinge simply slide together and the bolt is slipped through the holes and held in place by a cotter pin at the rear end of the bolt.

With reference to the lower wings, the idea of attachment is exactly the same. Except, of course, you fasten the left and right lower wings to the left and right lower longerons of the fuselage. In some planes, though, the left and right lower wings were all one piece. That is, the spars extended right through the fuselage, and the whole thing could be fastened solidly to the fuselage.

If the wings are hinged, why don’t they fall down? Because of the wing struts and wing cross bracing wires.

No Danger of Sagging

AERODYNAMICALLY speaking, the top and lower wings of a biplane are a solid piece in themselves. When the struts are put in, and the wings are tightened up there is no sagging strain on the wing attachments. So although they may only be fastened to the body of the ship, and to the center section, by small bolts, there is no danger of them sagging in flight or on the ground and pulling the wing fastenings loose.

No, not if the pilot of that ship knows his onions and has a good rigger (name given to the mechanic that is responsible for the rigging of the ship). However, if the pilot is slipshod, and the rigger doesn’t give a darn, a lot of things can happen. To begin with, the wing fastening bolts should be put in from front to rear, and the cotterpin should be in place. If not, then engine vibration is apt to shake the bolt out, and if it does—wham, your wing tears itself off.

Another thing, the cross bracing wires between the wings should be neither too loose nor too tight. If they are too tight, extra strain cahsed by violent maneuvering in a dog scrap might make them part. And if enough of them do that, your wings will just naturally fold up on you, and you’ll get no more of mother’s cooking.

The Turnbuckle

AS YOU probably know, the cross bracing wires are adjusted by turnbuckles. And a turnbuckle is simply a rod, tapered at both ends, a hole through it in the middle (to enable twisting), and a threaded hole at each end.

For the idea look at Fig. 3. The turnbuckles are fastened by wire at one end to the strut stubbs and the other end is fastened to the wire that is to do the bracing. Naturally, excess strain, vibration, etc., can make turnbuckles untwist a bit. And the result is a slack bracing wire.

And so, with reference to the wings there are several things that the good pilot takes care of and inspects every time he lands after a scrap. And lots of other times, too. He makes sure the bolts are in right. He makes sure that the locking cotter pins are in the bolts. He makes sure that the turnbuckles have not untwisted. And last but not least he makes sure that all those parts have enough grease on them and have not become rusted (and thus weakened) by exposure.

If he doesn’t do those things, he will be flying a weakened ship, that looks strong enough on the surface, but which will fold up on him some day.

The second part of the ship that needs constant watching is the landing gear or undercarriage.

What “Split Axle’’ Means

THE ships of today have what are known as split axle landing gears, and most all of them are equipped with Aero shock absorbers. By split axle we mean just that—the axle is in two parts, hinged in the middle, with the middle part higher than the two ends, so that the axle can spread outward due to the weight of the ship above it.

But, the war crates had solid axles with a wheel at each end. The axle went through vertical slots in the landing gear struts, and was held in place at the lower end of the slot by rubber cords. Thus when a ship landed the axle would try to travel up the slot in the landing gear struts, but the rubber cord would tend to hold it back. And the result was that most of the shock in landing was absorbed by the wound rubber cording stretching. Perhaps you’ll get a better idea of what I’m talking about by glancing at Fig. 4.

Of course, the wheel was fastened to the axle by a nut with locking cotterpin. The axle was stationary and the wheel revolver about it.

Now, a bad landing could weaken the rubber cording. A bum pilot might leave the locking cotter pin out of the nut on the end of the axle. A bum pilot might forget to change the rubber cording when it got too old for good use. And a bum pilot might weaken his landing gear cross bracing wires and not trouble about it.

Here’s What Could Happen

AND if he did, here’s what could and probably would happen. He might lose a wheel when taking off from bumpy ground.

His whole undercarriage might fold up on him sometime when he made a bad landing. A wheel might buckle when making a cross-wind landing. And if the rubber on one side gave way, the ship would be flung over that way when he landed, even if it was a good landing. And the result of any one of those things happening would be a nasty ground loop, if not a direct crash.

And just to show how dumb even yours truly can be, I’ll admit that once I lost a wheel while taking a Spad off. What happened? Well, a Spad always lands like two tons of brick, even with two wheels on—and with one gone, well, I plowed up enough of that drome to plant a year’s supply of potatoes, and it was a couple of weeks before all the skin grew back on my face.

And now for the third, and yes, the most important part to keep your eye on. Naturally, I mean the controls.

You can have a bum engine, you can have a badly rigged ship, and you can have a weakened undercarriage, yet somehow you can manage to get down, and probably walk away from the wreck. But—and that’s a big but—if your controls go cockeyed, you might just as well buy yourself a oneway ticket to the Pearly Gates. Or at least become resigned to a long stay in a little white cot in some hospital.

As I told you sometime ago, the controls of an airplane consist of the rudder bar and the joystick. The rudder bar works the rudder, and the joystick works the elevators and the ailerons. Naturally, they work them by the means of wires. To the right side of the rudder is a wire that leads back to the horn on the right side of the rudder. The same thing on the left side. Now, from the joystick four wires lead back to the elevators. Two for the top and bottom of the right elevator, and two for the top and bottom of the left elevator. Also from the joystick, wires lead out to the ailerons.

Now, just how many control wires were used, and how they were lead out to the various control surfaces, depended upon the type of machine. But, on any type of ship, turnbuckles were used for tightening or slackening, pulleys were used where the wire had to go around a bend, and leather guides were used wherever the wire unavoidably rubbed against something.

Wires Constantly Moved

Naturally it follows that the wires were constantly being moved while in flight. That means that some of them were constantly sliding around on pulleys, and others were constantly rubbing against leather guides.

Contact means friction, and friction means wear. Added to that was the strain of violent maneuvering, the full force of which was instantly transmitted to the turnbuckles and the wire eyes. (See Fig. 3.)

Now if the pilot did not take constant care of his controls he was simply flirting with his life. For example, take the pulleys. (Fig. 5.) Dirt, grease and other things such as dope flakes, could very easily jam them so that they would not turn. As a result the wire would slide around it, instead of the pulley revolving with the wire. Naturally the wire couldn’t stand that very long—and suddenly it would give way, and the pilot would be helpless to use his ailerons.

In other words, lateral stability would be all lost. In most planes the pulleys were inside the wing, and you got at them by unlacing a bit of the fabric. Doing that little thing was tiresome, but lordy how important!

The leather guides wore out very quickly and if they were not replaced with new guides you might find that your control wire was rubbing against a fuselage cross-bracing wire. And you can figure out for yourself what happens when steel cable rubs against steel cable. An example of where and how leather guides were used will be noted in Fig. 6.

And as for the turnbuckles and wire eyes. Well, the same points hold true for them as for cross-bracing wire turnbuckles. Get the wires too tight and a savage loop might part them. Let them get rusty and the eyes might pull out of the turnbuckles, or the turnbuckle itself give way. And so you make sure that there is plenty of grease on them to insure no rust.

AND that, incidentally, goes for the control wires themselves. They should always have a light coating of grease to prevent rust. And for a thorough inspection, the good pilot always runs his fingers along the wires, to see if they have become weakened by a strand or two parting. And when your finger suddenly gets a pin prick, stop, look and be a bright boy. Take out the whole wire and replace it with a new one. One strand breaking does not mean death is coming to you. It simply means that the wire has been weakened just that much—and maybe the other strands will let go when you’re ten thousand feet up.

Pay Attention, Buzzards!

Well, you’re all asleep now, so I guess I’ll go home. But remember this (if it’s possible) your engine is important, but so is the ship itself. It may seem like a waste of time to crawl all over it with an eagle eye each time before you go up. But listen to me, buzzards, I’ve seen plenty who figured it a waste of time, and took a chance. Well, they lost. I’m a scare-cat—I hate to take chances—maybe that’s why I’m still able to admire the trees and the flowers and other things in life on this man’s planet!

How the War Crates Flew: Why It Flies

Link - Posted by David on February 8, 2023 @ 6:00 am in

FROM the pages of the May 1933 number of Sky Fighters:

Editor’s Note: We feel that this magazine has been exceedingly fortunate in securing R. Sidney Bowen to conduct a technical department each month. It is Mr. Bowen’s idea to tell us the underlying principles and facts concerning expressions and ideas of air-war terminology. Each month he will enlarge upon some particular statement in the stories of this magazine. Mr. Bowen is qualified for this work, not only because he was a war pilot of the Royal Air Force, but also because he has been the editor of one of the foremost technical journals of aviation.

Why It Flys

by Robert Sidney Bowen (Sky Fighters, May 1933)

ALL RIGHT, you buzzards, sit up and take a good look at that young chap sitting over there on the right side of the room. See him? Well, take a second look, because there is one intelligent young man. You said it! Why is he so bright? Well, wait until I read you a letter that I just got from him—

Dear Uncle Wash-Out:

    I’ve been listening to your chin-jests since they first began many months ago. I don’t suppose that your head can get any bigger, so I’ll risk saying that I have enjoyed every word, including the periods and quotation marks.

    And so, I’m going to take advantage of your offer to ask a question. Here it is. The title of your chin-fests is, “How the War Crates Flew.” Well, how did they? In other words, Uncle Wash-Out, just what makes an airplane fly?

    Here’s hoping that you’ll give us some dope regarding the technical side of the actual flight of an airplane.

                                Hopefully yours,
                                    Charles Barringer.

Well, here I am, Charlie, in the flesh, and all set to grant you your wish. So pay attention and never mind if some of these other buzzards fall asleep. It’s bright lads like you that I like to help out. The others can go walk into a revving prop if they want to. Guess we’ll never miss them, much.

And, so here we go.

The air that we breathe and feel and know is all around us has weight, and it exerts pressure in all directions. Now, the action of air on a kite results in the air being compressed underneath it, and a vaccum being formed above it. That action causes the kite to rise for the simple reason that there is increased pressure on the underneath side and decreased pressure above. To get a good idea of all that, take a look at Fig.1.

FLIGHT is secured by drawing, or propelling, an inclined plane through the air, with the plane inclined upwards and toward the direction of motion. When I speak of plane in that instance I mean a flat plane, not an airplane.

Now, that plane going through the air has four forces working upon it. And those four forces are Lift, Drift, Gravity, and Thrust.

Lift, as the word itself explains, is the tendency for the plane to rise. And that tendency, as I explained above, is the result of increased pressure underneath the plane, and decreased pressure above.

Drift, or as it is often called, Resistance, is the reaction due to the action of propelling a plane through the air, thus retarding its motion. Drift is caused by the eddies of air which hinder the forward motion. You might almost call it a backward suction or drag. And then, too, there is drift, or resistance, caused by the frontal area presented toward the line of flight. To decrease drift as much as possible the thing to do, of course, is to streamline the object that goes through the air.
Take a ball for instance. Fig.2. The air slips around the ball all right, but the vacuum at the rear causes air eddies and these eddies more or less try to suck the ball backwards. And that, of course, hinders the forward flight of the ball.

Now take a look at Fig.3. We have put streamlining on the back of the ball. The result is that the air stream follows along the streamlining, and as a result of there being no vacuum, no eddies are formed to try and drag the ball backwards. Of course, you must understand that I’m speaking generally. There is not as yet, an airplane wing of one hundred percent non-drag efficiency. There is still a small vacuum and there are still eddies caused by that vacuum. But streamlining reduces air resistance to a minimum. And of course not only are the wings of a plane streamlined, but every other part of it. However, what I’m pointing out is how streamlining helps to reduce resistance or drift.

The third force is Gravity, or to be brief, the magnetic attraction of the earth to all things on it and above it, for at least a distance of fifty miles, maybe more. Scientists have not yet determined exactly how high above the earth the force of gravity extends. However, we know that this thing called gravity is an invisible force that draws things earthward.

Thrust is the forward force applied to the plane by the engine actuated by the propeller. Now the prop may push the plane through the air, or it may pull it, but no matter which it does the action is referred to as “thrust.”

What’s that? Each of those four forces has its opposite? Right you are. Good lad, for figuring that out. Huh? What does he mean? All right, listen.

In plain words the four forces are, upward, downward, forward, and backward. The thrust has its opposite, which of course is drift. And lift has its opposite which is gravity.

NOW, when the engine is off and the plane is on the ground, drift overcomes thrust and gravity overcomes lift. In other words there is no thrust or lift, which is only natural.

And so we start the engine, run it up full out and what happens? Thrust starts to overcome drift, and lift starts to overcome gravity. Eventually the action of lift overcoming gravity points the nose of the plane into the air and the plane rises. Now, so long as your engine is on, the thrust remains the same, regardless of forward speed. However, the greater the forward speed the greater the action of drift.

Maybe that last confused you a bit. How could thrust remain the same, and yet have forward speed increase so that drift increases also? Well, it’s this way. If you were flying into the wind your prop would be trying just as hard to pull you forward, but your speed over the ground would be reduced, and naturally the drift increased. But if you were flying with the wind your ground speed would be increased (because the wind helped blow you along), even though the thrust remained the same.

You probably noted that I put emphasis on the words, ground speed. Well, an airplane in flight always has two speeds. One is air-speed and the other is ground-speed. Now, take a look at Fig.4. A lot of folks get mixed up about the speed of an airplane. And as we all know, a lot of fiction authors go a bit haywire about it. However, as you will note from the figure, air speed is always the same. That is, of course, provided that you keep the throttle in the same place. And I might mention right here that air speed means the speed at which the wings pass through the air. No matter whether it is fifty miles an hour or five hundred miles an hour, it will stay the same in level flight. But the ground speed, the speed at which the plane travels over the ground, is always changing. If there is a twenty-mile wind and you fly into it, your ground speed is reduced twenty miles per hour. And if you fly with that wind your ground speed is increased twenty miles an hour.

So remember, when some one says, “This ship will do 200 m.p.h.,” that he means that the wings will go through the air at that rate of speed. Its speed over the ground will depend upon whether he flies with the wind, or against it.

Now in case you get the idea that I’m suggesting that well-known airplane speed records don’t mean a thing, just let me clear up that point. A straight-away record is taken from the average of two flights with the wind and two flights against it. Therefore the thing is balanced and you get the speed of the plane as though it were flying in still air. And the same holds true for a closed course speed record. One half of the course would be with the wind, and the other half would be against the wind. Get the idea?

BUT we happen to be up in the air just now, and talking about the four forces that are having their own individual effect upon the flight of our ship.

We said that thrust remains the same regardless of speed, but that drift increases, with increased forward speed. Right! Now, it is only natural that drift increases also as the forward speed is reduced. And when the drift is greater than the thrust what happens? It means that gravity has also become greater than lift. The result is that the plane goes earthward. If such a thing happened suddenly and the increase of drift and gravity over thrust and lift was of a great amount, the plane would naturally stall, and thrust and lift would be non-existant for the moment. In other words the plane would start toward earth, out of control until your falling speed became great enough to be flying speed.

That may sound a little complicated. But what I mean is that a plane stalls because drift has become greater than thrust and gravity has become greater than lift.

Huh? What about gliding down?

Now keep your shirt on. I can’t say everything in the same breath. I’m coming to that point right now.

You are flying along and you decide to land. Well, the first thing you do is throttle your engine. That, of course, is an automatic decreasing of your thrust. If you carried straight on at level flight drift would soon take complete charge of thrust and gravity would take complete charge of lift—and you would stall. So you point the nose downward, and let drift gradually overcome thrust and gravity to gradually overcome lift. Of course you take care of that sort of thing with your gliding angle. And then when you get right close to the ground you level off and go straight forward. That, of course, causes drift to overcome thrust (which now is simply gliding speed) at a faster rate. And the same with gravity overcoming lift. Presently thrust and lift become practically non-existant, and your plane stalls—but—you are only a couple of feet off the ground so you simply settle on the ground with no damage done. So in theory, every airplane landing is a stall—drift and gravity, having completely overcome thrust and lift.

Now, that is the general action of the four forces, thrust, lift, draft, and gravity, upon an airplane on the ground and in the air. And, therefore, it means that an airplane flies when thrust is equal to drift, and lift is equal to gravity. When those things are equal momentum carries the plane on. Increased thrust means increased air speed. And increased lift, means increased climbing angle.

Now, before I toss you all out, I’m going to say a few words about the design of airplane wings in regard to lift and drift.

THE length of a wing is called the span. And the width of a wing is called the cord. The relation of the span to the cord is known as the “aspect ratio of a wing.” A square wing would have a low aspect ratio. Whereas a narrow wing would have a high aspect ratio. See Fig.5. Now a high aspect ratio is better than a low aspect ratio for the simple reason that it gives the same amount of lift with less drift.

Now a flat wing, as we know, would have a lot of drift, regardless of its lift. So to lessen the drift the wing is itself streamlined. In other words it is changed from a flat wing to a cambered wing. And because it is cambered the air pressure on its underneath surface is at right angles to it. See Fig.6.

The curvature of a wing determines its lifting efficiency. (We are disregarding streamlining and drift for the moment.) A flat wing has less air pressure beneath, and as a result less upward lift suction on top. As the wing is curved more, both of those things increase. Naturally there is a limit, and aeronautical engineers are continually experimenting for the correct camber of the wings of the planes they design. But the curvature, particularly the curvature at the top is a mighty important item regarding the lifting efficiency of the wing. In the old days it was believed that a wing got its greatest lift from the bottom of the wing. But the wing design developments of recent years have proved that almost sixty-five percent of the lift of a wing is from the top. So camber is not something to toss out the window. Upon it depends maximum lift efficiency, in accordance with the correct angle of incidence (angle of wing toward line of flight).

And so, you might say that the wings of an airplane are the most important. You can always get a good engine, and you can always build a good fuselage, and the other things that go with it. But when you come to the wings, you have a real job on your hands. They have got to be strong enough to stay on when you are going full out. They have got to have maximum lift for the weight they are carrying, and they’ve got to have minimum drift, because you get more drift from your wings than from any other part of the ship.

But after all, drift is only one of the forces you’ve got to think about. There are three others, as I told you—lift, thrust, and gravity. Keep them all in mind, when you design that plane. And remember, thrust has got to equal drift, and lift has got to equal gravity, or you’ll never fly in a hundred thousand years!

How the War Crates Flew: Dizzy Doings

Link - Posted by David on January 11, 2023 @ 6:00 am in

FROM the pages of the April 1933 number of Sky Fighters:

Editor’s Note: We feel that this magazine has been exceedingly fortunate in securing R. Sidney Bowen to conduct a technical department each month. It is Mr. Bowen’s idea to tell us the underlying principles and facts concerning expressions and ideas of air-war terminology. Each month he will enlarge upon some particular statement in the stories of this magazine. Mr. Bowen is qualified for this work, not only because he was a war pilot of the Royal Air Force, but also because he has been the editor of one of the foremost technical journals of aviation.

Dizzy Doings

by Robert Sidney Bowen (Sky Fighters, April 1933)

WELL, being as how you buzzards are still kind of young, far be it from me to try and shove too much knowledge into your heads. So I guess I’ll devote this chin-fest to dizzy doings of war days. Naturally, we heroes, who restored France for American tourists, were only human after all. Which is but another way of admitting that now and then we cut loose from the conventional type of war flying, and had a little fun for ourselves.

Of course, nowadays, it wouldn’t exactly be called fun. As a matter of fact, it would be called rank violation of Department of Commerce (Aeronautics Branch) rules and regulation. But in the old days when you tried dizzy stunts, just for the heck of it, the only risk you ran, outside of handing in your chips to the grave digger, was maybe a burning up by the C.O. in case you missed calculations and wrapped your ship around a tree, or an estaminet, or something. But it was good fun, anyway, and as I look backward over the years I can visualize again some of the darndest, dizziest plane stunts imaginable.

And so, put your note-books and pencils away, and lean back—and don’t snore too loud. As a matter of fact, you’d better stay awake, because I’ll probably slip in a technical explanation here and there as I go along. And if you miss it—well, it’ll just be too bad for you, and how!

One of the most miraculous, and dizziest, and funniest stunts I ever saw pulled, happened at an airdrome in England. As a matter of fact it was at London Colney Airdrome, about seventeen miles north of London. There were several large-sized hangars on that field. One of them was set at right angle to the others. By that I mean that both ends opened onto God’s free air. There were no obstructions at the front or the rear. Well, one day one of the boys thought up the swell idea of “shooting” the hangar, as he called it. He had all the ships taken out and both the front and rear doors rolled wide open. And then he took a ship up and came down and flew through the empty hangar.

Naturally, the rest of us had to take a crack at it ourselves. There was a reasonable amount of clearance all around as you went through the hangar, so it wasn’t particularly tough. And besides, none of us had just gone solo the day before. We had a few solo hours under our belts, you know.

WELL, from that day on, “shooting” the empty hangar became a regular part of a follow-the-leader game. But, one day one of the boys (I won’t mention his name as he is alive and still eating three squares a day) decided to shoot the hangar all by himself. When he took off it was empty, and both front and rear doors rolled back. But, it so happened that a grease ball, not knowing the pilot’s intention, rolled the rear doors to within about ten feet of being shut. Just why he ever did it, we never found out. But I’m positive that it wasn’t on purpose. That particular grease-ball was too dumb to ever do anything on purpose.

Of course you can guess the rest. Down comes our boy friend toward the front end, which was open. Well, imagine his embarrassment when he gets inside! Naturally there is nothing to do but keep going. Which he does, heading for the ten-foot opening. And he goes through, hell bent for election. The result is, that he leaves his wings inside the hangar, and comes out into the open like a launching torpedo. However, the good Lord must have been riding the cockpit with him, because he streaks across the field and finally rams into a stone wall on the far side. We pick him up out of the wreck, out cold. But in an hour or so he’s all set again to carry on with the war. Needless to say, he never tried the stunt again! Those of us that were there, and saw him go in with wings on and come out with them off, haven’t stopped laughing yet!

Perhaps the dizziest, and yes, the dumbest stunt ever tried, was pulled off shortly after the signing of the Armistice. As the squadrons were moved up toward the Rhine and the Army of Occupation, some of us were made ferry pilots, and given the job of flying all obsolete planes to Lille for dismantling and ultimate destruction. New types had been sent out to replace them, so rather than fly them all the way back to England it was decided to concentrate the bunch at Lille, salvage the instruments, and maybe a few parts of the engines, and burn up what was left. Well, we ferry pilots went all over France collecting these ships, and some of them were in pretty good shape. As a result we held what was called a “Fly the Fabric Off” contest. Five or ten of us would each select a pretty good ship that was doomed for the bonfire. Then we’d take a knife and slit the leading edge of the wing fabric on the lower wings in several places. Then we’d take the ship up and stunt it with the idea of trying to-make the prop-wash catch under the slits and rip the fabric off in strips. The winner was the one who landed with the most ripped fabric trailing back off his wings. And believe me, buzzards, there was plenty and don’t think there wasn’t. The strangest part of it all, perhaps, was the fact that during the two weeks that we conducted the contests (before the C.O. at the field clamped the lid down on our dizzy actions) not a single one of us crashed, or even ruffled the part in his hair.

OH, all right, all right, I know! Luck is always with fools and drunks, and we weren’t drunk at the time.

But speaking of drinking. Here is a story that I can vouch for as being true, although I was not an eye witness. And, incidentally, it is not a yarn of which war birds can be particularly proud. But it actually did happen, and I never did pose as a war pilot who wore a halo around his head; so I’ll tell it to you.

It seems that a certain squadron had had a terrible binge, and one peelot took about five times as much as was good for him. Well, that pilot was down for an early morning show, and his orderly had the devil’s own job trying to wake him up out of his cognac slumber. Finally, with the pilot mumbling incoherent protests, they carried him out to his ship, dumped him in the cockpit and told him to get going. Perhaps he was partly revived, or perhaps it was flying instinct, but at any rate he took off with the flight, went over the lines, got into a scrap, nailed a Hun and came back. When he landed he stumbled out of the ship, and reeled into his hutment and went back to sleep. About two hours later he came tearing out, goggles and helmet in one hand, and sidcot suit half on. He tore for the hangar line, didn’t see any ships on the tarmac, and whirled on the Flight Sergeant—and bawled hell out of him for not waking him up in time for the dawn patrol! To this day (he’s still alive) that pilot has no recollection whatsoever of making that flight and shooting down a Hun!

And there you are. Take it or leave it! I won’t be sore, either way!

Many times dizzy and funny things happen when the pilot in question is trying to do the best he knows how. Your own dear Uncle Wash-out was the innocent victim of such an event on one occasion.

Now, never mind that wise-crack, you! Perhaps it was on more than one occasion. But I’m just chinning about this one, see?

It happened when I was with the squadron in Egypt, the year after the war. We’d been sent down there from Germany to—! Heck, this isn’t a personal history, so let that part go. Anyway, we were stationed at a field called Abukir, just north of Alexandria. And one of our jobs was to keep watch over an evacuated drome at a place called Amiria, way the heck out on the desert. There was stuff there that the Bedouins (desert gypsies) might steal, so we took turns staying at the place and guarding it. It would be two pilots, with a two-seater, nine men and one non-com for two weeks at a time. The relief would be made by ground transport for the men, and by air for the pilots.

WELL, one time my buzzard buddy decided to ride back with the men. So I took the air route telling him to be sure and get my battered suitcase into the lorry. And, of course, when he finally arrived at our home field, some ten hours after I did, he confessed that he’d forgotten all about my suitcase. Well, that wasn’t a serious enough crime to cut his throat for, so I left him alone and next morning took one of our spare “play-jobs”—a single seater Sopwith Pup that we used to play around with—and flew out to Amiria to collect my suitcase. There is still plenty of room in the cockpit of a Sopwith Pup even when I’m in it, so instead of going to the trouble of lashing the suit case to the center section struts, I simply tossed it in the seat and used it as a back rest.

A Sop-Pup is rigged to climb all the time, so I got off the ground without really realizing just what was going to happen. But when I got back to my home drome I sure realized—and how! And it was just this—because of the suitcase at my back I could not get the stick back far enough for leveling off and landing, tail down. I could glide down all right, but the only way I could get it leveled off was to shove the throttle forward, and let the inherent climbing qualities of the ship bring the nose up. But even then I couldn’t do that close enough to the ground for even a “pancake” landing.

AND there I was, in the air and unable to land. I tried ten thousand, million times to reach my hand around behind me and pry the suitcase overboard. But the Devil, himself, must have been sitting on it. It was with me, and was darn well going to stay with me. I circled the field for over an hour, and no soap. By that time the entire squadron was grouped on the tarmac wondering why your Uncle Wash-out loved the air so much that he stayed up, when eggs and bacon and coffee-cognac were waiting for him in the mess.

Well, to make a long story much sooner, I finally convinced myself that me and a crash had to get together eventually, so why not now? Of course, after some three years of war flying, I’d been able to get this thing called crashing right down to a science. So I figured the best way, and decided that a lone date palm on the edge of the drome was the one and only answer to my prayer. So I glided for it as slow as I could. I practically loafed through the air. And by the time I reached it I was just about ready to stall. I’d maneuvered so that my left wing-tips would catch the trunk, about ten feet up; they did, and the result was exactly as I had figured. The wings wrapped themselves about the trunk, and the rest of the plane, with me still in it, revolved about the trunk until the whole business “mushed” onto the ground. There was no Murad handy to light up, so I simply climbed out of the wreckage and pulled out that damned suitcase after me. Not a scratch on me. I was hardly even shaken up. But the plane was a mess; just matchwood. Real clever, eh. Oh, yeah? Well, you should have been there to hear what my C.O. told me! It took him ten minutes, and he didn’t use the same word twice! After that I carried my toothbrush in my sidcot suit instead of in a suitcase.

LIKE all the other branches of armed service the flying end was no exception when it came to pulling dumb things. One of the dumbest that impressed me the most, was the way the “powers-that-were” selected pilots for different types of work. If you weighed nine hundred pounds and stood eight feet, six inches tall, you were usually assigned to scout work in ships that you could practically carry under your arm. But if you were of midget proportions they put you on a twin engined bomber that would take you from Sunday to Thursday to get into.

Of course, when I say “usually” I’m really stretching it a bit. However, there were several cases of the right pilot being assigned to the wrong ship. So the idea is worth the yarn, anyway.

IT’S a yarn about an old buzzard buddy of mine who was so small that he had to reach up to touch the top of a straw hat on the ground. Honest, he was knee high to a grasshopper. But don’t worry, the lad was plenty dynamite when Huns came around. Anyway, the big boys must have looked at him through a magnifying glass because they selected him for day bombing, and sent him out to the field where I was busting up ships. Well, it became my job to teach him to fly. Even in the good old training ship, the “Avro,” he had to use two cushions in order to be able to see over the forward cockpit rim. And even then he had the Devil’s own job trying to reach the rudder bar. But he was one game guy, and he learned fast, I’m telling you. His first solo was perfect, and he continued to do damn fine work in the air.

And then one day, Fate must have given him a kick in the slats. He was up-stairs just practising when, zingo! . . . both his cushions slid off the seat! He couldn’t get them back on, and he couldn’t see over the cockpit rim except by standing up. And when he stood up, he naturally couldn’t get his feet on the rudder bar. Well, the lad sure was in one hell of a fix. But he did the best he could. He throttled the gun, went out of sight in the cockpit to tap the rudder, and got the ship headed down toward the field. Talk about your one-arm paper hangers! That lad was a dozen of them rolled into one. But unfortunately, it wasn’t the day for medals for him. He made a valiant attempt at a pancake landing, but by the time he could get the ship set, the airdrome had slid past him . . . and down he came, level as a billiard table, and right smack onto the roof of the squadron office. And, my dear little buzzards, the C.O. in the flesh was inside. The result was one squadron office gone to hell, one Avro gone also, one midget pilot unhurt but frothing at the mouth, and one C.O. with ten years off his life, and not knowing whether to commit murder, or laugh it off.

P. S. He laughed it off. He was that kind of a reglar guy.

And, then there was the case of a. . . .

OH, oh! Here’s our C.O. and the glint in his eye doesn’t indicate that he’s going to do any laughing. If he asks questions, just tell him that I was explaining the wing co-efficient of an S.E.5 as a means of determining the lift-drift ratio of the U.S.S. Akron. Maybe he’ll believe you at that! S’long!

Strange War Ships: Nieuport Triplane

Link - Posted by David on January 2, 2023 @ 6:00 am in

FOR FOUR successive months in 1933, War Birds ran a series of covers featuring “Strange War Planes.”—those freak planes that were used during the First World War. The covers were by Eugene M. Frandzen—known here for the covers he did for Sky Fighters from its first issue in 1932 until he moved on from the pulps in 1939. First up we have the Nieuport Triplane of 1918!

Strange War Ships:
The Nieuport Triplane of 1918

th_WB_3306DESPITE the unusual appearance op this month’s cover ship, the designers were not trying to be funny. Triplane design was based on the pact that the use of three planes would permit a narrower chord and hence greater visibility for the pilot; increased maneuveribility; shortening of span and reduction of length without loss of lifting surface.

The “tripes” had the fatal weakness of shedding their linen on the upper wings and breaking up in the air. Sopwith, of England, produced the first successful tripe followed soon by Albatross and Fokker tripes. Nieuport engineers conceived the idea of staggering the wings like stair-steps. The result is pictured here, it was undergoing tests as the war closed. It was powered by a 110 h.p Le Rhone and had a top speed of 121 m.p.h., a span of 26 feet and length of 18 feet.

Strange War Ships: Nieuport Triplane 1918
Strange War Ships: Nieuport Triplane 1918 • War Birds, June 1933
by Eugene M. Frandzen

Item of note: the cover image has apparently been reversed from the way it was painted as Frandzen’s signature is backwards on the ground under the tail of the Nieuport Triplane.

What is next month’s strange ship? Check back again for pictures and complete data on another freak ship of the war!

How the War Crates Flew: Just How Fast?

Link - Posted by David on December 14, 2022 @ 6:00 am in

FROM the pages of the March 1933 number of Sky Fighters:

Editor’s Note: We feel that this magazine has been exceedingly fortunate in securing R. Sidney Bowen to conduct a technical department each month. It is Mr. Bowen’s idea to tell us the underlying principles and facts concerning expressions and ideas of air-war terminology. Each month he will enlarge upon some particular statement in the stories of this magazine. Mr. Bowen is qualified for this work, not only because he was a war pilot of the Royal Air Force, but also because he has been the editor of one of the foremost technical journals of aviation.

Just How Fast?

by Robert Sidney Bowen (Sky Fighters, March 1933)

WELL, my Fledglings—er, sorry, I should have said Buzzards! Well, anyway, the chin-fest this time is going to be one which I am afraid will shoot a pet belief of yours all to pieces. By the time I get through, you birds will be calling your Uncle Washout all sorts of nasty names, and the main one will be—“liar”! But I’ve been called that by dumber buzzards than you (yes, there are a few I think) so don’t build up any hopes of getting my goat. A Sopwith Camel got that, years ago! However, I’m warning you in advance. If you don’t believe me, then get up and walk out. It’s all the same with me. But, if you do stay, keep your traps zippered up until I’ve emphasized the final period and quotation marks.

I’ve been planning to chin this tune to you for some time, but I’ve delayed doing it until we got to know each other a little better. That is, rather, until I got to know you a little better! Well, I’ve found, according to your letters, that your bark is worse than your bite. And so figuring that though you may toss things my way, when I’m through, my one and only life won’t be hanging in the balance.

So, here it comes. Ever read anything like this?

“Slamming the stick over and stepping hard on left rudder, Jim Collins, keen-eyed eagle of Uncle Sam’s brood, spun around on wing-tip and went thundering straight for the Fokker at a speed well over 200 m.p.h. His twin Vickers yammered harshly, and—”

AND horse collar to you, Jim Collins! And also, horse collar to you, Mr. Author, who lets that sort of stuff drip off your typewriter keys!

You guessed it, Buzzards! I’m going to chin about the speed of all the war flying crates that I and 9,999,999 other dumb peelots made famous. Yeah, I can see that look slipping into your eyes, already. But go ahead—I’m going to chin the truth, the whole truth, so help me!

Jim Collins, or any other pilot during the late mix-up, never went even 200 m.p.h. in level flight. Now when I say, the late mix-up, I’m talking about the World War. Perhaps there’s been another since then, and no one has told me about it. But the World War I mean, is the one that took place between 1914-1918. And during those years no war crate, Yank, British, French, German or Ethiopian, came within 50 miles of a top speed of 200 m.p.h!

All right, all right, sit down! Let’s start right in with the year of 1914 and take a look at the records year by year.

The War, as you all know, and if you don’t, I’m telling you, started in August, 1914. Now up to that date the speed record for land planes was 105 m.p.h., made by Maurice Prevost when he won the Gordon Bennett Cup Race held in France, September 29, 1913. And the speed record for seaplanes was 86.8 m.p.h., made by C. Howard Pixton wrhen he won the Jacques Schneider Maritime Aviation Cup Race (original name of the present Schneider Trophy Contest) held on the Bay of Monaco in March 1913.

Therefore we enter the World War with a top speed of 105 m.p.h. But, don’t overlook the fact that that was the top speed of the fastest racing plane. Not a military ship loaded with guns, ammo, and a bomb or two here and there, but a racing ship stripped of everything possible that would hinder forward progress, and with an engine tuned up for that one race!

Okay, now we turn to the records.

The British sent to the front in the 1914 period, first, the well-known Avro, powered with a Gnome or Le Rhone with a top speed of 65-70 m.p.h. Then there was the B.E. (Bleriot and later the British Experimental) powered with a Renault, that knocked off about 50 m.p.h. Another was the Gnome powered Vickers that slid along at 60-65 m.p.h. And of course the Handley-Page Bomber that had two Rolls-Royce engines, and thundered forward at about 80 m.p.h. Those ships were all two-seaters, or over, and were the vanguard of British ships in France.

Now the French had their good old two-seater Breguet that bent your whiskers back at 55-60 m.p.h. They also had the Bleriot (same as the British) that clicked at around 55 m.p.h. The well-known Caudron that mushed onward at about the same speed. And ditto for the Maurice Farman, the Morane and the early Nieuport. All were two-seaters or bombers save the Bleriot, the Morane and the Nieuport.

AND the Germans? Well, they had the Albatross scout with a Mercedes and. 65-70 m.p.h. to its credit. Then there was the two-seater Aviatik that clicked at around 70-75 m.p.h. And the Taube single-seater monoplane with an Argus engine that could only hit 50 m.p.h. and not go boom!

So taking it all in all the Germans had a general edge of about 5 m.p.h. over the French and British save for the Handley-Page with its twin engine speed of 80 m.p.h. But taking the general top speed average we find it to be around 65 m.p.h. in the first year of the war, or, to be pretty near exact, some 40 m.p.h. below the then existing world’s speed record for all types of aircraft.

Now, in case you think I’m going to go on listing all the various planes year by year, you’re crazy. Such a thing would fill this whole mag. And the C.O. tells me that there are some swell yarns he wants to put in, and for me to go easy on the space. But, I’ve started this fight, and I’m going to finish it by tracing the increase of war plane top speed right through to 1919. I’ll do it by sighting performances of the various leading and famous crates.

Naturally, no World War power made a ship one year, and then tossed it in the ash can for an entirely different design the next. True, that was done in a few cases. But what I’m driving at is that not only were new designs brought out, but the old ones were improved upon. As an example we find the original British Bristol with a Gnome in the nose in 1914 doing around 70 m.p.h., and in 1917 with a Rolls-Royce and a few improvements it did 105 m.p.h.

BUT we’re getting ahead of our chinning. Let’s go back to 1915. That year was really the year that aerial warfare got under way. Prior to then, war flying consisted of reconnaissance and bombing work. But in 1915 the boys got their hands on aerial guns and the works started popping.

The British jacked up the speeds of their old ships a little bit and sent out the first DH single-seater (DH2 Pusher) that could hit 95 m.p.h. That same year the first Sopwith Scout came out with 90 m.p.h. Then there was the first Martinsyde single-seater that made 95 m.p.h. And the fastest of all, the. famous Bristol “Bullet” that did just about 100 m.p.h.

Meanwhile the French got 90 m.p.h. out of a new Nieuport. Some 70 m.p.h. out of a Bleriot scout. And about 5 m.p.h. more out of a new Caudron single-seater. The French seemed to be a bit conservative in their speed figures that year.

That year saw the introduction of the first Fokker. It was called the “Eindecker” and was a single-seater monoplane powered with an Oberursel engine, and had a top speed of 95 m.p.h. The Germans boosted their Albatross speed up to 80 m.p.h. And that was about all they did.

So we see that in the second year of the war England has most of the speed honors. But, believe it or not, the fastest speed is still 5 m.p.h. below the record set in 1913.

However, in 1916, the scrapping nations pulled up their socks and got to work on the idea of shoving their planes through the air at a real good clip.

The British pushed their Avro single-seater up to 100 m.p.h. They came out with a new Bristol that did 105 m.p.h. They made a redesigned Martinsyde do 110 m.p.h. And they sent out the first S.E. an S.E.4 (not S.E.5) that did close to 100 m.p.h. But their greatest achievement was the new DH4 that did around 125 m.p.h. That ship was the fastest of its time.

THE French did a little better by themselves as regards speed in 1916. The most important item was that they came out with the first of the famous Spad pursuit ships. This job, which was powered with a Hispano-Suiza engine, as were all Spads, knocked off 105 m.p.h. The new Caudron twin-engine bomber did 85 m.p.h. which was pretty good for a crate of its size. And the fixed-up Nieuport equaled the top speed of the Spad.

Of course, 1916 was a big year for the Germans. The first Fokker of the famous D series saw front line service that year. Naturally, it was the Dl, and powered with a Mercedes it was good for 105 m.p.h. The Aviatik, with a Benz in the nose had the same speed. And the New Benz-powered Albatross hit the same clip, also. But strange as it may seem, the honey of German ships that year, as far as speed was concerned, was the Benz powered Halberstadt single-seater. The first Halberstadt that year was powered with an Argus and could do 105 m.p.h. But when they stuck a Benz in the nose the ship went up and buzzed along at a nice clip of 120 m.p.h.

And so, at the end of that year we find the British and the Germans pretty much on a par for speed honors, with the French tagging along slightly behind. And not only that, we find that the existing speed record for all types of aircraft has received a good swift kick in the ailerons!

Now, before we step into 1917, let me put a word in for good luck. I have been chinning about the speed of war crates. I have not made any mention of the maneuverability of war crates. So just bear that in mind as we talk on. Speed was an asset, but not the whole thing. So don’t get the idea that just because the French had slower ships that they were doing the poorest job. Far from it, believe you me! In a dog-fight a highly maneuverable ship can trim the pants off a faster ship any day in the week, assuming, of course, that the pilots are equal in skill. So don’t let your grandmother tell you different.

AND so for 1917, the year when supremacy of the air was finally decided for once and for all in the World war.

Perhaps the greatest contribution to the art of smacking things out of the sky that year was made by the British when they sent out to France the Famous Bristol Fighter. The job of that year was powered with a 200 hp. Hissi or a 200 hp. Sunbeam, and it slid along, with full load at 120 m.p.h. Next in line was the well-known DH9 with a Napier-Lion engine. This ship, also a two-seater, could do 110 m.p.h. And then came two of the most famous airplanes ever built. First the S.E.5. at 125 m.p.h., and the Sopwith Camel at 120 m.p.h. Both ships were pursuit jobs, as you all know. And—but why chin more? You know all about their history.

To match the British contributions the French brought out a new Nieuport that could do about 120 under full steam with a Gnome in the nose, and about 115 with a Hisso. In addition to that they stuck a 200 hp. Hisso in a redesigned Spad and got a top speed of 125 m.p.h.

Of course the Germans weren’t asleep, either. The first was their new Mercedes-powered Albatross that clicked at 125 m.p.h. The next was the souped-up Aviatik that made the same speed. Then the Fokker D4 at 120 m.p.h. and later the D5 at 125 m.p.h. And last, but not least, the famous Pfalz with a speed of 120.

And so we find England and Germany hitting it off neck and neck, with the edge in favor of England, due to its higher topspeed average for all types. And particularly due to the introduction of two brand new pursuit ships, the S.E.5, and the Sopwith Camel.

All of which brings us up to 1918 and the final showdown.

As usual, England got the jump by bringing out two brand new types, and improving on all the others. The new types were first the Sopwith Dolphin, a high altitude ship that could do 130 m.p.h., and the Sopwith Snipe that could do a shade over 140 m.p.h. with luck. This ship was considered by many to be the fastest thing in France at the end of the war. It came out about three months before the Armistice was signed. The principle improvement on other British designs was that made on the S.E. series. The S.E.5a came out at 135 m.p.h. Then, too, there was the D.H.9a with an American Liberty engine (two-seater) that did 125 m.p.h. And the Bristol Fighter was put up to 130 m.p.h.

The French simply boosted up the speeds of old designs. They got the Spad up to 135. And they got the Nieuport up to around 130. Outside of that, they slammed into the enemy with what they already had.

The Germans worked on the Albatross scout and got 135 m.p.h. out of it. They also came out with the famous Fokker D7, a ship that was credited with 140 m.p.h. as a top speed. And they also came out with the Fokker Triplane with a speed of about 135 m.p.h. The only other ship improved upon was the Pfalz, which was boosted up to 130 m.p.h.

And there, Buzzards, you have the straight dope on the speed of war flying crates. Mark you! I’m speaking of speed at level flight, not diving speed! That was something different. But when you speak of airplane speed, you speak of speed from here to there, not from up there down to here.

AND so—eh, what’s that? I knew it, I knew it! Why didn’t I speak of Yank planes? Well, here’s why, Buzzard, and be surprised if you will. There was not a single American designed and manufactured ship in action in France during the War. True, there was the American Liberty D.H.9a, but that was fundamentally a British De Haviland design. If the war had lasted longer, the American Thomas-Morse might have seen service over Hunland.

One more thing. What was the fastest thing in the air in France? The Sopwith Snipe, you say? Wrong, Buzzard, wrong! It was the tip of a propeller blade. The tip of a nine foot prop at 1800 revs traveled a shade over the nine and one half miles per minute! Figure it out for yourself, or ask Dad, he knows! S’long.

How the War Crates Flew: Bombs and Bombing

Link - Posted by David on October 5, 2022 @ 6:00 am in

FROM the pages of the February 1933 number of Sky Fighters:

Editor’s Note: We feel that this magazine has been exceedingly fortunate in securing R. Sidney Bowen to conduct a technical department each month. It is Mr. Bowen’s idea to tell us the underlying principles and facts concerning expressions and ideas of air-war terminology. Each month he will enlarge upon some particular statement in the stories of this magazine. Mr. Bowen is qualified for this work, not only because he was a war pilot of the Royal Air Force, but also because he has been the editor of one of the foremost technical journals of aviation.

Bombs and Bombing

by Robert Sidney Bowen (Sky Fighters,February 1933)

SIT down, you buzzards, and stay down! Any side remarks and I’ll. . . . Huh? What’s that? Why am I all steamed up? Well, just take a look at this letter. The darn thing explains itself.

Dear Uncle Wash-out:
    I think SKY FIGHTERS is a pretty swell magazine even if it does contain your stuff. But I’m just kidding about the last part. I guess you’ll do all right.
    However, here is a complaint. Wasn’t there anything else besides pursuit ships in the World War? Or were they the only ones you knew how to fly? Seems to me that I’ve read some slick yarns in this mag that had to do with bombing raids. Do you know anything about the technical side of bombing, or are you just plain dumb about that sort of thing?

Henry Craveil

Now, if Henry lived just across the street I’d sure step over and bend a couple of one hundred and twenty pound bombs over his dome. But he happens to live out in Oregon, and that’s too much of a walk for me. So I’ve just got to swallow that there insult, and try to fix Henry up the best I can. And while I’m doing it you other crash hounds can pin back your ears and get a brain full.

Yes, I’ve shoved a few bombers around in my day, and have dropped a couple of eggs here and there. Now don’t go asking me what I hit, because I promised the C.O. of this mag never to tell a lie, and I’m not going to break that promise just to maintain my glorious reputation with you birds.

But, shut up! Let’s get serious.

World War airplanes were divided into three general classes. They were pursuit planes, observation planes, and bombing planes. Of the three classes the pursuit ship was the only one that could perform all three functions. Now, when I say that, I don’t mean to imply that it was a waste of time to have observation ships and bombers in action. Naturally, each type of ship could perform its own particular job better than either of the other two. However, a pursuit ship could serve as a scouting plane, an observation plane, and also drop a total of about eighty to one hundred pounds of bombs. An observation plane could do its job of reconnaissance and drop bombs as well. And perhaps in a pinch serve as a pursuit ship. I say that because the well-known Bristol Fighter could outfly almost any pursuit ship, at least from the standpoint of speed. Another one, too, was the British DH9 powered with the Liberty or Rolls-Royce engine.

But for the sake of this chinfest we’ll say that the general run of observation ships were not good in pursuit work. The bombers, of course, were ships built for the job that the name implies—bombing. However, they could also function as observation ships, for the very plain reason that observing means seeing things with the eyes. And the crew of a bomber naturally didn’t fly with their eyes closed. However, no bomber in the World War could serve as a pursuit job, no matter how much cognac the pilot put under his belt.

LISTEN, buzzard, sit down! What?

What’s all this got to do with bomb dropping?

The answer is, nothing in particular. However, I’ve been using up breath with the idea of first pointing out how the particular job of each of the three general classes of ships used during the war overlapped each other. One of your favorite authors might tell of a pursuit job bombing a place. And you might say, “Horse-feathers! Bombers did that sort of thing!” So I’m just putting in a few words or two to save the authors’ hides. I passed out a couple of cracks at them at other chinfests, so I’ll get back in their good graces now by proving the authenticity of some of the stuff they write. Sure the emphasis is on the “some”! Think an honest war-chicken like me would back ‘em up in everything they said? Huh! I want to go to heaven sometime, you know!

Oh, yes, about bombs.

WELL, as I know, and you should know by now, an aerial bomb is, fundamentally speaking, a container full of high explosive that will detonate and explode when it comes in contact with the ground after its travel through the air. There are all kinds of sizes, shapes and mechanical functions of bombs. However, there are two features that are incorporated in any type of aerial bomb. One is to travel nose first, and the other, to detonate and explode upon contact with an object, or in the case of delayed detonation, to explode after the bomb has penetrated its objective.

In order that bombs will drop nose first, they are of course made heavier at the nose. In other words, pear shaped. To get the idea look at Fig. 1. Now, in order that the bomb will maintain directional stability (not wobble around, or go end over end) the bomb is fitted with rudders, or vanes as they are called. There may be three or four vanes, set equal distances apart at the rear end of the bomb, or I should say, the tail of the bomb. These vanes, when passing through the air, tend to keep the bomb going straight, just as the feathered vanes at the end of an arrow keep the arrow to a straight path of travel. See Fig. 2.

THERE are various ways to make a bomb explode once it strikes its objective. There are, generally speaking, certain types of bombs that have the detonator in the nose. Others have it in the tail. And still others have a detonator in both the nose and tail.

Now, of course, it is not a good idea to have bombs all set to explode when in the bomb racks of your ship. In other words they should be fitted with some sort of a safety device that will keep them from detonating themselves until they have struck the objective. Of the type of bomb I’m talking about (which was used quite generally during the war) there were two kinds of safety devices. The first was a safety pin that had to be yanked out before the detonator could strike the explosive. An idea of this safety pin can be obtained from Fig. 3. Just as in a hand grenade there was a pin that had to be pulled out before you threw the grenade.

The other safety device was a little propeller attached to the end of the detonator. If the fuse was at the tail of the bomb and the bomb exploded by the detonator traveling downward, the detonator rod was threaded so that the little propeller revolving in the air stream would eventually spin free of the rod and allow the detonator to snap down when the bomb
struck. In case you birds are still dumb about that point, take a look at Fig. 4.

Naturally, if the detonator was in the nose the little propeller was fastened to the detonator so that the air stream would spin it around and allow the detonator to move up where it could hit the fuse when the bomb struck, as in Fig. 5. And, of course, you can figure for yourself how the propellers would be set in relation to the detonating pins when-there was a detonator at each end of the bomb.

NOW, just to clear up those two safety devices, let me say that the little propellers do not function until the bomb is traveling through the air, after it has left the ship.

Yes, yes, I know. Why didn’t the little props untwist when the bomb was going through the air and still attached to the bomb rack?

Well, smarty, because there was a second pin, attached to the bomb-rack, that stuck between the little prop blades and thus stopped them from revolving. And the first safety pin that I spoke about, that passed straight through the detonating rod and prevented it from moving, even though the props were off, was also attached to the bomb-rack. So you see, when the bomb was released both safety pins were pulled loose (or rather, the bomb pulled loose from the safety pins) and the bomb went sailing down with its little props spinning, so that the detonators could do their stuff when the bombs struck.

THERE is no need of going into the explosive side of bombs. Different combinations of chemicals and powders made different kinds of explosives. We won’t try to give you a talk on chemistry today. However, there is one point I want to speak of—that’s the item of delayed explosions. For instance, if you are bombing troops and other things on the surface of the ground, you want a bomb that will explode instantly and hurl its death dealing messengers in all directions. But if the bomb must first go through armament, etc., before it can do any worthwhile damage, you naturally have got to have a bomb that will explode after contact. It’s the same principle as shells from artillery guns. And its worked out by a system of delayed fusing. In other words the bomb strikes, the detonator hits the fuse, but the main body of the explosive does not go off instantly. Of course you must realize that when I speak of a delayed explosion I don’t mean an explosion that comes five or ten minutes after the bomb strikes. A delay of one quarter of a second is long enough.

Now, just one more thing before we talk about actual bombing. The bombs that we are chinning about now are aerial bombs that are used for destructive purposes. In short, bombs that will blow the pants off your enemy, and him along with them. But, of course, there are other kinds of aerial bombs. One is the parachute bomb that you release so that it will strike and light up the surrounding country in case you are making a night landing. And the other type is the flare bomb that is used for signalling purposes. Both types arc more or less electrically operated. In other words the bomb is ignited as it passes through the air.

Like many other functions of airplanes, bombing is often all planned out ahead of time. That is, bombing of a certain objective by bombing planes. Let us say that Brigade has issued an order to a bombing squadron to try and knock the daylights out of a railhead back of the enemy lines. The first thing to figure out is what types of bombs to use. In other words instantaneous or delayed action bombs. Then comes the selection of the time to make the raid (whether daylight or at night) and how many planes to use.

NATURALLY the bombers must have a pursuit escort. Some scrapping ships to keep away the enemy should he stick his nose in and try to upset the apple cart. That, of course, is arranged by Brigade. The pursuit ships will meet the bombers at a predetermined point, escort them over, and escort them back—we hope!

Now, it must be figured out before hand, as near as possible, just how the bombing is to be done. Shall it be one ship at a time, or all at once. However, no matter what Is decided, the accuracy of dropping the bombs depends upon the speed of your plane, your altitude and the direction of the wind. By plotting those three items you can set your bomb sight so that you will have a fair chance of hitting your objective. Bomb sights of today have been worked out so that they are pretty accurate. In the late war they weren’t so good, although the boys did a darn fine job with what they had.

SOME of you buzzards think that all a bomber does is fly over its target and drop a bomb, and fly away. That’s all wrong. A bomb is released before you reach the target. And if you have set your bomb sight correctly the bomb strikes the target when the plane is directly over said target. See Fig. 6.

You ask why, eh? Well here’s why.

The plane is traveling through the air. That means that every part of the plane has a certain amount of momentum. In other words, anything that leaves the plane travels forward a certain distance before gravity can take full charge. Naturally, gravity has its effect the instant the bomb is released, but it takes full charge gradually so the downward path of the bomb is curved. (As shown in Fig. 6.) Therefore the bomb must be released before the target is reached, as it travels forward as it travels downward.

Now, if the plane is traveling into the wind its actual ground speed is reduced, though, of course, air speed (the speed at which the wings pass through the air) is constant. It follows then that when the bomb is released its forward travel will also be reduced by wind resistance, and it must therefore be released when the plane is closer to the target, than it would be if the plane was flying with the wind. Naturally when the wind speed is estimated and calculated, the altitude at which to fly is then determined. Or rather the best altitude at which to fly. In other words if it takes eight seconds for your bomb to drop from a bombing altitude of 1000 feet and your plane travels ground speed at the rate of two thousand feet in eight seconds, you must set your bomb sight so that the target will be in the “finder” (center of the sight) when you are two thousand feet away from the target. To sum it all up, you estimate wind speed and direction, then set your sight in accordance with the number of seconds it will take the bomb to drop from a stipulated altitude. Then you bomb from that altitude. And if you wipe out the objective, maybe we’ll give you a medal!

THE releasing of a bomb is simple. As the nose must drop first, the bomb is put in the rack, nose forward. It is gripped by what are called “toggles” at the nose and the tail. By pulling the toggle release, which is simply a lever in the cockpit with a wire leading down to the toggle catches, the catches are opened and the weight of the bomb itself makes it drop free. Some planes had individual bomb-racks under the wings. Each bomb could be released separately or all the whole works at once. The big bombers had vertical racks. In other words the bombs were placed one upon the other. When the lowest one was released, the one above it automatically dropped into the lowest one’s place.

Bombing by bombers and some observation ships was an art all its own. In pursuit ships bombing was a hit-and-miss affair. First, you oniy had about twenty pound bombs. Just enough for “surface” damage, such as in trench straffing. Second, you had no sights (though modern pursuit ships have bomb sights). And third, you often released your bombs on pursuit ships without any idea of hitting anything. That was, of course, when some enemy pursuit ships I jumped on you, and you wanted to reduce the weight of your ship, and thus increase its maneuverability qualities.

So there, Henry, you insulting buzzard, is some dope on bombs and bombing. And by the look in the C.O.’s eye I think he’s about set to drop an egg on your Uncle Wash-Out—so consider me gone!!

How the War Crates Flew: Top Man Wins… Maybe!

Link - Posted by David on September 7, 2022 @ 6:00 am in

FROM the pages of the January 1933 number of Sky Fighters:

Editor’s Note: We feel that this magazine has been exceedingly fortunate in securing R. Sidney Bowen to conduct a technical department each month. It is Mr. Bowen’s idea to tell us the underlying principles and facts concerning expressions and ideas of air-war terminology. Each month he will enlarge upon some particular statement in the stories of this magazine. Mr. Bowen is qualified for this work, not only because he was a war pilot of the Royal Air Force, but also because he has been the editor of one of the foremost technical journals of aviation.

Top Man Wins… Maybe!

by Robert Sidney Bowen (Sky Fighters, January 1933)

WELL, I’ve had you upstarts under my wing for so long now that I guess I can’t call you fledglings any longer. Of course there are some of you who are worse than fledglings. But still some others of you have been paying attention, and have actually learned a thing or two about this business of war flying, and what have you. So from now on I’ll consider you all as promoted to the next grade, and call you buzzards. But, mind you, any cracks out of turn, or any funny business, and back you all go to the rank of fledgling. And take it from Uncle Wash-Out, there ain’t nothing lower in a pilot’s estimation than a fledgling. Okay, buzzard—here we go!

A few chinfests back (the C.O. of this mag will give you the exact date) I told you the hows and whys of Getting Your Hun. The main point I leaned on was the great amount of preparation before you even took your crate into the air. Well, this time I’m going to deal with technical points after you get upstairs and spot your man.

Now, read this over.

“Spandaus guns yammered savagely and twin streams of fire reached out for the Yank ship. But the pilot in that Yank plane was not to be caught napping. Slamming into a half roll, he immediately came out of it and zoomed up to cartwheel over and go plunging straight down on the German ship, his Vickers singing their song of death. It was all over then, for the Yank was top man, and top man always wins!”

Does that sound familiar? Sure it does! You’ve read something more or less like that in fifty different stories. But here is where I step into the picture and maybe make myself the nasty antipathy of a whole lot of your favorite authors. And maybe before I get through, the C.O. of this mag will toss me into the klink and get a greaseball to double for me. But, come what may, I’ve got to be honest with you buzzards. In these chinfests I’ve got to stick to the technical truth. In others words, I’ve got to be on the up-and-up. Now, don’t get the idea that I’m only trying to pick your stories apart. That’s not the idea. I’m just going to elaborate on points that your authors didn’t have time to enlarge upon. Their stuff is fiction—action—boom-boom stuff—and all the rest of it. But my stuff is straight stuff. Oh, maybe dry in spots, but the true dope.

Okay, lean on this. Top man in a scrap does not always win!

The method of getting an enemy ship depends upon a lot of things. The most important thing is what kind of a ship it is. In other words, you don’t go after two-seaters the the way you go after a pursuit ship. And you don’t go after a pursuit ship the way you go after a bomber. And you don’t go after any of them the way you go after a balloon.

Of course, there is one item that applies to them all. That is, getting the old machine-gun bullets in where they will do the most damage. But thinking about it and accomplishing it are two different things.

Now, for example, let’s take the case of two pursuit ships scrapping it out. Let us say that the Hun comes in from the east, and you come in from the west. You are both at the same altitude and you spot each other at the same time.

WELL, naturally, both of you will start to climb. The more altitude you have the more advantage you have. (Don’t forget, now, I’m talking about pursuit ships.) Why is altitude an advantage? Well, buzzards, as I’ve told you many times before, a pursuit ship pilot can only shoot his guns in one direction—forward. Therefore, he has no protection at the rear. It stands to reason, then, that the ship with the most altitude has the better chance of maneuvering down on the other’s tail, or as it is often called, his blind spot.

But in this case we’re talking about, we’ll say that neither you nor your enemy get greater altitude. You draw close together at the same level. Well, you both probably take nose to nose shots at each other. Scoring any damage that way is not common occurrence for the simple reason that you are both protected by a wall of metal. And that wall of metal is your engine. Also, a plane coming dead on to you presents a mighty small target. If you don’t think so, well, the next time you go up fly nose to nose with some other ship and take a good look for yourself. Fig. 1.

WELL, you can bring your enemy down by flying right into him. But that would mean curtains for you, too. And, besides, ten times out of ten, your enemy doesn’t want to cash in that way. So he pulls out of the way at the last minute. Usually he zooms up in a climbing turn, hoping to drop down on your tail. Well, you beat him to it and do the same thing yourself. And what’s the result? You have both gained altitude, and you have dropped into what the boys used to call the ring-around-rosey, or the tail chase tail formation.

Take a look at Fig. 2, and you’ll see what I mean. You both are on the outside of circle, headed in opposite directions, and chasing each other’s tail around in the air. Naturally, you both are trying to get around faster than the other so that you can plant a nice little telling burst in the other’s tail. But you find out that the other ship has just as much speed as you have, and the result is that you both stay on opposite sides of a big invisible circle.

All right, buzzards, I know what you’re going to ask. So sit down, and I’ll tell you. Why not shorten the diameter of your circle? In other words, why not bank more sharply? Well, it’s a swell idea if you can do it. And if you can, why of course you have a beautiful broadside shot at your enemy. But just remember that your enemy isn’t flying around and reading a copy of SKY FIGHTERS. Not by a long shot. If he’s a good pilot he’s trying to pull the same stunt on you!

WELL, of course you can’t keep on going around in a circle all the time. If you keep it up long enough you’ll both starve to death. So someone has to break the circle—bust up the ring-around-rosey idea. But whoever breaks it has got to be quick and careful. Once you pull out of it your opponent has a couple of precious seconds in which he can whip around and let you have it.

One of the best ways to do that (as proven in the late Big Fuss) was to pull up and over toward the inside of the ring. In other words, you try to climb up and come down on top of your man. His defense against that is to do the same thing himself (and bring both of you right back where you were) or else to whip over and down and then up. The idea being to get you from underneath before you can bring your guns down to train on him.

RIGHT there is a good example of what I said at the beginning. If your enemy should be successful in whipping down and up before you whipped up and down, why it would be a case of top man getting it in the neck.

In view of the fact that I’ve illustrated my top man idea I’ll end this scrap by saying that you catch him napping and shoot his pants off, and his life along with them. That, of course, is the final thing in every scrap—I mean, that one or the other pulls a surprise maneuver that catches the other napping and allows the chance for the killing burst.

But before I speak about observation ships, I want to point out another example of top man not winning. Suppose when you break the circle by zooming up and over and your enemy slams into a quick half-roll and dives away. Well, of course, he takes a chance that you may be able to slide around and get him. But he has a few precious seconds in which to get up a lot of diving speed, before you are in a position to dive after him. The result, of course, is that you are top man, but your enemy is diving away from you, putting air space between you and him, which means a longer range shot for you. And not only that—he presents a rotten target. He is edge on to the ground, and you’d be surprised how a ship diving away from you seems to melt in with things below on the ground. The ground is dark and the outline of parts of the ship presented to you are also dark. In other words, the ship forms no silhouette, like it would if there was a background of sky or clouds. To get the idea, look at Fig. 3.

And now for the two-seater ships.

YOU are patroling around and suddenly you see an enemy two-seater taking pictures behind the lines. Naughty! naughty! That pair of young men must be taught a very lasting lesson right pronto! So you go down after them. But do you drop down on their tail?

Well, if you do and they see you coming, you won’t need to worry any more about how you’re going to pay your losses in that poker game in the mess last night. And why? Well, buzzards, there is an observer in that two-seater, parked in the rear cockpit. And when he left his home drome he took along at least one, and probably two, guns mounted on a swivel mounting that enables him to shoot in any direction except forward and down. And you can bet your sweet life that he still has them with him. So, if you come piling down from the rear and he sees you, well, you’re just going to get a whole mouthful of bullets that won’t taste good.

OF COURSE, there is an exception to everything, and it is possible to pile down on an enemy two-seater from the rear, and pop it right out of the sky. But such a case is only when the occupants of that two-seater are napping, or are too busy doing something else, and therefore fail to see you before your bullets are slapping into them. Such an occurrence could happen, if you got the sun at your back. In that case its brilliance would blot you out of their sight.

But enough of what you shouldn’t do. Let’s get on with what you should do.

In this case we’ll say that it is not a surprise attack. The enemy sees you coming. Well, no matter what angle you come down from, you will be in their range of fire. And naturally you cannot come down to their level though out of range, and then bore in from the side, for the simple reason that a two-seater doesn’t have to go into any ring-around-rosey maneuver. It doesn’t, because the observer can train his guns on you while the pilot flies the ship dead ahead.

All right, buzzards, all right! I’m getting to it, so keep quiet.

The thing to do is to attack the two-seater in its blind spot. And the blind spot of a two-seater is the area underneath the ship, extending from the prop to the tail skid. Neither pilot nor observer can bring their guns to train on any part of that area. And so the idea is to dive down under the two-seater and come up at it from underneath. In other words, hang on your prop and plant your burst right smack through the floorboards of that two-seater. And no matter which way, he goes, you just try and keep in that blind spot. Fig. 4.

And so I murmur again—what do you mean, top man always wins?

Now for bombers. And are those babies tough! Present-day bombers, as you buzzards probably know, have about as many blind spots as a goldfish bowl. And the old wartime bombers didn’t have so many themselves. About the only blind area they presented to attacking planes was directly under the forward parts of the ship, and close up under the wings.

And so you won’t be misled, let me tell you that the best way to get one of those big babies was to take along a couple of your squadron pals with you. The idea being that while a couple of you worried the occupants of the bomber the rest would pile in from the side they weren’t looking at, and get in your shots. But should you be alone, the best way was to take your pot shots from underneath. Top man wins, eh? Oh, yeah?

NOW, before I rush myself away from you, I’ll just mention a word or two about top man and balloons. Getting a balloon is a job that really is ninety-nine and nine-tenths surprise. You have several factors against you. First, the men in the balloon are keeping a sharp eye out for you. Second, the ground defense of that bag is also keeping a sharp watch for you. Third, it is possible for the bag to be hauled down before you can close in on it. Fourth, you can be exposed to terrific fire from the ground. Therefore, the bigger the surprise, the better chance you have of getting the bag.

LET’S say you pile down on it, and miss. Meantime you are diving through lead hell—that lead hell doesn’t miss. Well, you may be top man, but it’s curtains, unless luck is with you and you can fly clear before you’re struck in a fatal spot.

Well, let’s attack another way. Fly close to the ground (making it hard for the men in the bag to spot you against the ground, and completely hidden from the bag’s ground forces), then at the last moment zoom up at it and let drive. Your shots go home and the bag goes blooey. It was top man, wasn’t it? And in the meantime you are top man to the ground forces, and they may nail you before you can zoom out of range. Fig. 5.

So, as I said at the beginning—it depends upon a lot of conditions and cirmustances whether the top man wins or loses. In most scraps it is favorable to be top man—but that rule does not hold good all of the time—and don’t let Santa Claus tell you that it does!

The Original Sixgun Buzzard by Frederick Blakeslee

Link - Posted by David on August 15, 2022 @ 6:00 am in

SOMETHING a little different this week. Instead of the story behind a cover, we have the original version of one of Frederick Blakeslee’s interior illustrations. Blakeslee’s cover paintings seem to show up frequently on the various auction house sites, but this may be the only interior illustration of his we’ve ever come across on those sites.

The image in question is the one Mr. Blakeslee did for “The Sixgun Buzzard,” the Smoke Wade story from the April 1933 issue of Battle Birds (as well as the lead story in our third volume of The Adventures of Smoke Wade)

As you can see, the printed version has a lot of plate edges on it outlining areas in an unseemly manor. Although the original is much cleaner in this regard, it has unfortunately suffered some damage at some point.


The Sixgun Buzzard by Frederick Blakeslee, Conte crayon, ink, and pen on paper.
16″ x 10½”

“The Dragon’s Breath” by O.B. Myers

Link - Posted by David on July 22, 2022 @ 6:00 am in

THIS week we have a story from the pen of a prolific pulp author O.B. Myers! Myers was a pilot himself, flying with the 147th Aero Squadron and carrying two credited victories and awarded the Distinguished Service Cross. Sent down behind enemy lines, Pete Hennabury runs into an Allied spy and is entrusted with important information. Important information that ends up right back in the hands of the Germans. Desperate to get the information to the Allies, Pete plays a dangerous game, betting everything on his best mate’s dragon breath! From the March 1933 number of War Birds, it’s O.B. Myer’s “The Dragon’s Breath”

With one foot on the rail of death, Pete mixed a crash cocktail, chilled it with the ice of his own nerve and served it in a washed-out cylinder of a Fokker mercedes!

“Yank Rookie Gets German Ace” by Paul Bissell

Link - Posted by David on June 13, 2022 @ 6:00 am in

THIS week we present another of Paul Bissell’s covers for Flying Aces! Bissell is mainly known for doing the covers of Flying Aces from 1931 through 1934 when C.B. Mayshark took over duties. For the October 1933 cover Bissell put us right in the action as a …

Yank Rookie Gets German Ace

th_FA_3310IN THE early summer of ’18 the 95th Yank Squadron was having a busy time of it on the Front near Verdun. The long-promised Spads had not yet arrived, and they were still flying their old Nieuports to combat the new Albatrosses and Fokkers with which the Germans were filling the skies.

The squadron losses had not been unusual, but quite heavy enough so that replacements were constantly coming up. Often these were lads who had previously been with the French or English, and so had some actual combat experience. But sometimes there would be one who came fresh from the training centers, with only what experience he had received in “aerial combat” at those fields, and not enough of that.

As a general thing, these lads could be broken in gradually, the usual procedure being for the experienced pilots to take them over in formation, avoiding, if possible, a serious scrap, but allowing them to get accustomed to archie and the feel of being out—assisted to be sure, but on their own, where the stakes were life and death.

If a scrap was unavoidable, the new lads were told to stick close in their formation, or if the formation was broken, to pull out of the scrap entirely if the opportunity presented itself. However, things didn’t always work out 15,000 feet up as they were planned on the ground.

So it was with Lieutenant Walter Avery, who came up entirely without experience to join the 95th. He, like all other rookie aviators, without underestimating his job or the danger in it, was impatient to get at the enemy, and restlessly waited for his time to be taken over.

While waiting, he heard tales of the activities of the Boche squadrons in this sector, especially of an ace named Menckeff, who flew a red Albatross with the tips of its lower wings painted black.

This ace had thirty-eight official victories to his credit, and he and his men had been in many a spectacular dogfight with the Allied birdmen of this sector. Possibly at night Avery dreamed of that red ship with the black lower wing tips. Anyway, those markings must have stuck in his memory for—but that’s part of the story of Avery’s big day.

WITH the sun shining down blindingly from the vast blue dome above, seven German ships sped along over the big white clouds below them. High up there, everything was so quiet, so beautiful and peaceful, that it was almost incredible that the veil of smoke seen drifting across the landscape far below was really the shroud of hundreds who at that instant were dying—a sacrifice to the gods of war.

So, indeed, it was impossible to believe that these ships flying swiftly and easily, beautiful in the sunlight, their red wings flashing, were in reality a squadron of death, mercilessly searching for their victims.

Far below, coming from behind a cloud, five tiny specks had appeared, almost invisible against the shell-torn earth still miles beneath them. The quick eyes of the Boche leader had observed them, however, and already his wings were wagging their signal to his comrades. The red, blue and white circles on the lower planes showed them to be Americans. It was the 95th, and Lieutenant Avery was being taken over for the first time.

He had already come through his first tryout with archie, and had marveled at the apparent unconcern of the older pilots when puffs of smoke had appeared all around them as if by magic, and their ships had been bumped around as if by the hand of the magician himself. The flight had shifted course suddenly, and at certain definite intervals, but that was all, and soon the smoke puffs had ceased.

But now it was different. The flight leader had banked up sharply, at the same time giving a quick signal. Avery, looking over his shoulder, saw seemingly countless red ships, their guns blazing, diving straight down on him, and he knew that this was one scrap not as per ground instructions.

Just what happened during the next few moments will always remain a confused mass of memories to the young airman. He tried to remember his warning to stay in formation, but there seemed to be no formation left. He had escaped the first driving onslaught and was now just one of twelve twisting and dodging planes. So far he had not even used his machine gun. There had seemed nothing to shoot at—just flashes of color that passed him before he had opportunity even to determine what they were.

Then some bullets, spattering close to his cockpit, brought him abruptly out of his confusion. His senses cleared. All his training came back suddenly. He threw his ship into a screaming vrille and came out with a red ship square in front of him. Automatically his fingers squeezed the trips, and for the first time he felt the thrill of actual combat. His aim was high. He saw his tracers pass over the top wing of the other ship.

The German was busy on the tail of one of the other Americans and had not noticed Avery. A yank of Avery’s stick brought the whole enemy ship more into line. Then for the first time his eyes caught something that sent his heart into his mouth. The red Albatross had black lower wing tips.

Carefully he sighted, aiming at the nose of the Albatross so that the German would have to pass through the line of fire. Once again his guns throbbed, and this time his aim was true. The German plane shot up in a tight loop like an animal stung unawares, but at the top, his motor sputtered and he dropped off to one side. Right behind him went Avery, his guns blazing, the bullets ripping the sides of the diving Albatross.

It was soon over. They had drifted too far over the Allied lines for the Boche to make the German side; so, with motor gone, unable to fight, and himself wounded, he threw up his hands in surrender. The scrap was over, and Avery headed back for the airdrome.

His squadron mates had seen the newcomer get his German, but it was not until the prisoner had been brought in that Avery was sure his eyes had not deceived him. And not until then did his comrades realize that the young American lieutenant had on his first flight over the lines brought down the famous German ace, Menckoff—a record we believe unique in the annals of the war.

The Ships on The Cover
“Yank Rookie Gets German Ace”
Flying Aces, October 1933 by Paul J. Bissell

“Aid to the Lost Battalion” by Paul Bissell

Link - Posted by David on April 25, 2022 @ 6:00 am in

THIS week we present another of Paul Bissell’s covers for Flying Aces! Bissell is mainly known for doing the covers of Flying Aces from 1931 through 1934 when C.B. Mayshark took over duties. For the September 1933 cover Bissell put us right in the action as Lt’s Goettler and Bleckley try to get …

Aid to the Lost Battalion

th_FA_3309THE Congressional Medal of Honor is the highest decoration the United States can bestow upon its military heroes. Only four airmen of the World War received it — Captain Edward V. Rickenbacker, Lieutenant Frank Luke, and Lieutenants Harold Ernest Goettler and Erwin R. Bleckley. The first two, both aces, are well known, and most people know that Congress so honored them, even if a bit tardily in Rickenbacker’s case. But few know of Goettler and Bleckley and the glorious story of how they gave their lives, going “above and beyond the call of duty in action with the enemy” in an effort to save some of their countrymen.

On October 2, 1918, the 77th Division in the Argonne sector was ordered to advance, with directions to reach their objective, regardless of cost. In this movement was included the Second Battalion of the 308th Infantry, under command of Major Charles Whittlesey. The advance was made late in the afternoon. At the end of hours of terrific hand-to-hand fighting the battalion had advanced to its objective, the old Charlevaux Mill, near Binarville.

The troops on both sides of them, however, had been unable to hold their positions. This allowed the Germans to filter in from both ends and completely surround the Americans. For the next five days, this battalion of about 550 men, without food, supplies or ammunition, with scant water, and subjected to the most terrific fire, dug themselves in as best they could and refused repeated demands of the Germans to surrender.

They held a narrow ravine, the general location of which was known to our headquarters, but the exact location and the conditions existing among these men was unknown, since repeated efforts from both the battalion and the main division to establish contact had been unsuccessful. It was, however, definitely known that some of the battalion were still alive, and so, on October 6th, an order came over the wires which snapped every airdrome on that front to instant alertness. “Locate the battalion and get it food and supplies at any cost.”

Every available ship of Squadron 50 was soon on the line. The powerful Liberty motors roared and the propellers bit into the heavy fog. This was no flying weather, but somewhere out there where the incessant bark of the big guns could be heard, were Americans surrounded and trapped by the enemy, suffering and dying, waiting for help from their comrades.

There was no small talk among the airmen. A dirty job lay ahead of them—a job that none of them wished for, yet none of them thought of shirking. The planes were loaded with iron rations—chocolate, bully beef, coffee, hard tack—bandages and official messages. Quietly the men climbed into their ships—an observer and pilot to each of the D.H.4s, and with Flight Commander Lieutenant Goettler leading, one after another the big planes took off into the mist.

An hour had passed when a ship came sliding out of the fog to a rough landing on the tarmac of Squadron 50. The mechanics rushed out, to find it was Goettler and Bleckley, his observer, returned from their search. The plane was riddled with bullet holes, and large pieces of fabric were missing from the fuselage.

The faces of the two airmen were grim. Goettler’s orders were curt. “Refuel the plane and put in another set of rations. Patch it up as best you can. We have found the Lost Battalion, and we’re going back in another fifteen minutes.”

THE mechanics did not know until later all the details of the first flight—of how the battalion had at last been located at “Charleyvoo” Mill—how the big D.H.4 had waded through a storm of fire from the ground to get in a position to drop the much needed rations to the entrapped doughboys; how, although the two airmen had gone as near the ground as they dared, the lines of the Germans were so close to the Americans that when they had dropped the rations and messages overboard, the Germans had come out and seized them. All of this the mechanics later learned from their squadron commander, to whom Goettler had given a brief account of his effort while the plane was being refuelled.

All they now saw were the two grim-faced youngsters gravely shake hands and climb into their respective cockpits, and, in a ship already shot half to pieces, take off to carry aid to their fighting comrades.

Only too well the two lads knew what lay ahead of them. After their first unsuccessful trip it was evident to both of them that there was but one chance for success—to wing down through the terrific hail of lead from the ground, so low that with their wing tips almost touching the torn tree trunks of what had once been a forest, they could with accuracy drop the supplies to the doughboys dug in below.

Yes, this was possible if they could live through the terrific barrage they would meet. Anyway, it was their one chance, and there was no hesitation on the part of the two lads as Goettler piloted his plane directly to Charlevaux Mill. Soon it was below them, a pile of gray ruins, and Bleckley pointed out to “Dad” Goettler a khaki-clad figure waving feebly to attract their attention.

The big plane nosed over, swinging down in a spiral. The fire from below was now appalling. Machine-gun bullets were riddling the plane, while the impact from high explosives at short range tossed the ship around almost like a small boat in a rough sea.

Completely oblivious to this terrific punishment, the two airmen concentrated their entire attention on the job to be done. Goettler piloted his plane skilfully, while Bleckley leaned far over the side, holding a bag of rations ready to drop at the right instant. The trees were not fifty feet below them when Goettler leveled off slightly. Then, banking up, he let his wing tip almost touch the hillside to give Bleckley a better chance in his work.

Below, the doughboys crouched behind what shelter they had made for themselves, looking anxiously upward, waiting for the food and ammunition that they needed so desperately. They saw Bleckley release the bag and then lean over the side to see if his aim had been true. But this time the two aviators were never to know, for at that moment, up from the ground, death, in the shape of leaden bullets, reached for them.

The nose of the big D.H. yanked up suddenly, then dropped as if the hand that held the control had suddenly lost its strength. There was a sickening instant as the plane slipped off on a wing, then crashed, burying her heavy nose deep in the hillside over near the German trenches.

The next day, in an irresistible advance, the 77th Division pushed the Germans back and reached the “Lost Battalion.” Only 107 of them were left; and on the hillside were the remains of the D.H.4. Goettler had apparently been killed instantly, and Bleckley, hopelessly wounded, died before reaching a hospital. But their deed will live forever.

The Ships on The Cover
“Aid to the Lost Battalion”
Flying Aces, September 1933 by Paul J. Bissell

Next Page »