Looking to buy? See our books on amazon.com Get Reading Now! Age of Aces Presents - free pulp PDFs

How the War Crates Flew: What Made ‘Em Fly

Link - Posted by David on November 5, 2024 @ 6:00 am in

FROM the pages of the October 1934 number of Sky Fighters:

Editor’s Note: We feel that this magazine has been exceedingly fortunate in securing Lt. Edward McCrae to conduct a technical department each month. It is Lt. Mcrae’s idea to tell us the underlying principles and facts concerning expressions and ideas of air-war terminology. Each month he will enlarge upon some particular statement in the stories of this magazine. Lt. MaCrae is qualified for this work, not only because he was a war pilot, but also because he is the editor of this fine magazine.

What Made ‘Em Fly

by Lt. Edward McCrae (Sky Fighters, October 1934)

NOW you wise young sons and daughters of a double eagle, or maybe it was a buzzard, maybe you hadn’t noticed it before but if you had looked a little carefully at all the nice pictures of the war crates on the covers of SKY FIGHTERS you might have noticed that nearly every one of them without exception had something peculiar about it. Whether you noticed it or not, they all had engines in ’em.

Yes, sir, they carried whole gasoline engines up in the air. Some of them had one and some had two and some had more than that—even back in the early days of the war.

Now if I know anything about you clucks you’re just as likely as not to come asking me why those aviators wanted to load themselves down with a lot of machinery. It would be just about like you.

So I’m going to head you off and tell you something about those powerhouses we used to take upstairs along with us. And don’t be asking me why they carried more than one of ’em. I’m going to get to that if you’ll let me. Mary, don’t you throw that spit-ball!

You Gotta Have an Engine

Maybe your papas have let you look under the hood of the old family car, in which case you might have learned the secret that a vehicle just can’t get along without an engine if it’s going to do any good running at all. Honey, it’s the same way with an airplane.

So I’m going to tell you a few simple things that won’t be too difficult for your shallow pans to remember so you will have a little inkling of why they have all different kinds of engines when it would look for the world like if they got a good one they would keep using it instead of trying to think up other designs and shapes to use.

You might have noticed that some of the engines when they were looked at from the front looked like stars with a lot of cylinders all sticking out every which way from the center. And others looked more like a common every-day automobile engine. How come it and why?

Air and Water Cooling

The answer is, my precious little dunderheads, that some of them were air-cooled and some water-cooled.

They learned that an engine that didn’t have to tote its own drink along with it weighed about three-quarters as much as another of the same horsepower that was water-cooled. And they learned also that for every pound you could reduce the weight of it you could add two pounds of useful load, or what amounts to the same thing, you could have a bigger engine and more power for the given weight.

Now the reason you could get those two extra pounds where one grew before was that when you took a pound’s weight away from the engine you could reduce the weight of the ship by another pound that was necessary to strengthen it to support the pound you took away, and you could further reduce the weight of your ship by another pound that went to strengthen the wing so it would support that extra pound of engine weight. That’s as clear as mud, isn’t it?

But unfortunately that added strength didn’t always show as engines got bigger. After they got so big, an air-cooled engine wouldn’t weigh any less than a water-cooled one for the same horse power.

So they used one or the other depending on the performance they wanted.

The Air-Foil

Now when you start trying to recognize the different kinds of engines you want to look at the front of them. That way you can see what kind of a surface, or air-foil they present to the wind. That’s the important thing for you to consider.

When you look at them that from that aspect you will see that there are only about three different general groups of designs. Of course, these differ among themselves in slight ways, but after all, even human beings in one family have slight differences.

Take a look at the figure which I have very cleverly called Figure 1. In that you will see the front view of a few of the stationary cylinder engines that are water-cooled and whose fathers got the idea of their design from our old friend the automobile engine. Now this group shows some outline forms of the engines themselves, but there is a fly in the amber. They don’t show the radiators, and a water-cooled engine has to have a radiator and that presents a big flat surface to the air to reduce your speed.

Rotary Engines

So then you have next in what for want of a better name I have called Figure 2, the rotary engines that were used during the war. Some of the names of these are Gnome Rotary, the Le Rhone Rotary, and the Clerget Rotary.

These were funny power plants. You might not believe it when I tell you, but it is a fact that the crank shaft stood still and the whole engine itself revolved around it! That sounds kind of Chinese, doesn’t it? But it isn’t. What with those cylinders whirling around at a thousand revolutions or more, they kept cool pretty well, but once in a while one of them would fly off the handle and scatter cylinders all over No-Man’s-Land.

And then they had another feature that the brass hats didn’t seem to bother about, but which we didn’t like at all. They were lubricated with castor oil!

Hot Castor Oil

Our objections to it came, not because we had to share their fuel oil, but because the engineers didn’t think castor oil was bad enough cold, they let it get hot in the motor.

And brothers and sisters, you have not smelled nothing yet until you have got a nose full of red hot castor oil. And you can smell it for miles—and that is not an exaggeration! We were afraid the Heinies could always tell we were coming by just sticking their noses up in the air and taking a deep breath. Boy, it was awful!

And then you might take a glimpse at a figure that I have designated as Figure 3, even though you can’t count up that high.

Those figures in that picture are some outlines that look almost like those rotary babies. But they aren’t. Their cylinders stick out from a common center just like the rotaries, but there is some sense in the way they act. The cylinders stay still and the crank shaft revolves just like any respectable crankshaft ought to do.

We Had ’Em Long Ago

We had them in the old days, and they had all the way from three to twenty cylinders stuck around the shaft.

Those were the babies that have turned out best since the war. But we had a lot of satisfaction out of them. A couple of these babies we liked in those days were the Salmson and the Cosmos Jupiter.

And just to prove how practical these air-cooled babies were, if you will take a glance around an air field today you will see more air-cooled radial motors than any other kind. Babies of that pattern since the war were the first to cross the North Pole, first to fly the English Channel, first to span the Atlantic, and about the first for everything of any importance.

And now that you know all about the different kinds of engines, I’ll give you that promised dope about why they had different numbers in different kinds of ships.

Why the Extra Engines?

There are two reasons they put more than one engine in a ship. One is to increase and distribute the lift and the other is to increase the factor of safety. These two reasons don’t always both appear in the one ship.

But even you pupils of mine ought to be able to see that if you have two engines and one conks you’ve still got a chance to get back safely over your home trenches, and if you’ve got three engines to do the same work there’s almost no chance at all of your having a forced landing in a mess of Krauts. I know about a Handley-Page bomber that went out and got a direct hit that reduced its whole lower wing to a mass of shreds and tatters and knocked one of its engines clear out of it, but the pilot steered it sixty miles back to his home tarmac! Which is something different from landing on your nose in the middle of a few rosettes of shrapnel.

Helps in the Lift

And then in the matter of lift, you will find the heavy bombers had more than one engine so they could lift a lot of weight. You would first think they would just build one big engine to carry it, but that wouldn’t be so good. Let me try to show you why.

Suppose it took a thousand horsepower to lift the desired bomber and its load. They could build one engine of a thousand horsepower all right, but they wouldn’t get a propeller that could use up and deliver all that power. But if they, say, built two five-hundred horsepower engines, they had two props which could use up all that power and besides they had the additional safety factor of the two motors I just spoke about. You might not remember it well, Tillie, but we had plenty of ships with more than one engine during the war.

The Germans were the first to come out with them, although the French were at work on them even before the war broke out. The first German flew with two engines in 1915.

But the French quickly matched them with the old twin-motored Caudron, and the British followed right off the bat with the twin-motored Dyott, which didn’t last a very long time, however. The Government never did put its official okay on the old Dyott, but it was not a bad heavy crate, and it had a lot of features the German Gotha later incorporated.

Then the Italians in the person of the well-known Mr. Caproni burst out across the field with a three-motored ship. It had two eighty-horsepower tractor motors and one ninety-horsepower pusher. Some ship, eh, Tony!

And toward the end of the fracas the British got real ambitious and brought out a ship with four—count them—motors. It just had engines stuck all over it.

They Went in for Numbers

But once they started going in for numbers, do you think the Germans were going to let anybody get ahead of them? No, my masters, not those boys.

We knocked down one of their big bombers in France, and we thought somebody had attached wings to the machine shop itself.

That crate had five motors sprouting out of it.

That might not be a lot of motors these days, but my children, I’ve been talking all this time about the war that was fought a long, long time ago.

And now, take my blessing, and go out and jump in your ten-motored kiddie cars and zoom out of my sight. Or else I’ll be counting motors instead of sheep in my sleep.

How the War Crates Flew: Ancestors of the Modern Planes

Link - Posted by David on June 18, 2024 @ 6:00 am in

FROM the pages of the September 1934 number of Sky Fighters:

Editor’s Note: We feel that this magazine has been exceedingly fortunate in securing Lt. Edward McCrae to conduct a technical department each month. It is Lt. Mcrae’s idea to tell us the underlying principles and facts concerning expressions and ideas of air-war terminology. Each month he will enlarge upon some particular statement in the stories of this magazine. Lt. MaCrae is qualified for this work, not only because he was a war pilot, but also because he is the editor of this fine magazine.

Ancestors of the Modern Planes

by Lt. Edward McCrae (Sky Fighters, September 1934)

I’VE been telling you rummies a whole lot about this and a little more about that from time to time. So I figure it’s about time I told you about some problems of the crates themselves. You should know, but more than likely you don’t, that up until the war started, airplanes were pretty darned crazy things at best, and people who thought they had common sense wouldn’t have anything to do with them. I remember when the newspapers all over America raised all kinds, of Cain because President Theodore Roosevelt risked his neck in one of those fool contraptions.

At the beginning of the war an airplane was a freak. The designs that inventors had worked out looked like the results of a nightmare. But a lot of them would fly in spite of their crazy-looking features. To put it straight, an airplane was a thing that was more likely to scare the enemy to death than to administer any physical damage to him.

Take a look at Fig.1. There the three pictures are of A—an Austrian ship, B—a Belgian ship and C—a British ship.

A Nightmarish-Looking Dingus

Now here’s an interesting angle about that third one of that little group. It is an early Avro. An Avro is a British ship that gets its name from its inventor, A.V. Roe. It’s a nightmarish-looking dingus, ain’t it?

Then listen, sisters and brothers, that was the granddaddy of a long and honorable line of ships that are going great guns yet today. I’ll admit that the present day Avro is a far cry from that box-kite looking thing in the picture. But it flew. And after all, Percival, you yourself are a far cry from your ancestors that hung by their tails from trees. Or are you?

Now, just when the soldiers got serious about shooting each other in the collar buttons and began to realize that this fracas wasn’t going to be just a big Rotary Club picnic, the boys with the brains stuck their noses over their blueprints and started figuring on force-feeding the awkward little birdies so their wings would get big and strong like they were eating their spinach every day.

Birds as Models

And naturally, when they figured what their problems were they showed what bright inventors they were by casting their eyes at the real birds. The results then, quickly made junk out of the crazy former models, and now all ships began to show a similarity in shape, even though they were designed in different countries and by people who didn’t know each other. See Fig. 2.

Two-A shows you the top view of the German Albatross made in 1914 and used by the Germans. Look at the wing-tips and the tail surfaces. Doesn’t the picture look like they had laid a bird down on the drafting board and traced its outline?

And what was going on in England at the same time? Look at Fig. 2-B. There’s a Handley-Page monoplane. That was used in the war, too.

Now compare their wings and tail surfaces. Don’t you see in their resemblance how they were both getting at the same idea, although not comparing ideas with each other?

Of course, in those days they didn’t have the powerful motors that were being developed and are in use now. And not having much power, their problem was to get strength enough in the wings and at the same time get the wings light enough for the weak motor to support.

Brace Wire

For that purpose, they resorted to using a lot of brace wire. Wire was light and strong so they used great quantities of it. I remember I was with a gang of flyers just up to a new field near Flanders in the early days and we just had got in a delivery of half a dozen new experimental ships that we were to try out. There were wires all over it. One of the boys said: “Gosh, I never thought I’d ever have to fly a wire chicken coop.”

But that was what they looked like, and they thought they had the problem solved. But, listen, tots, they didn’t. For just about then they learned something from the aviation engineers.

That was, that a wire vibrates crossways, and when it vibrates it offers just as much wind resistance as a flat edge of a hoard the width of the vibration!

In other words, if you had twenty wires stuck up and down between your wings and they vibrated two inches when the motor was running, you might just as well have braced your ship with twenty, two by fours with the narrow side facing the front. And what a lot of resistance that would cause. It would take a Cyclone motor to fight that and get any speed.

Let’s Watch the Albatross

So they started getting rid of wires wherever they could. And since we’ve started with an Albatross, let’s follow that baby through its stages of refinement. It was a good ship and once just about ruled the skies, so let’s watch a good ship grow up.

Look at Fig. 3. There’s your Albatross in 1915. Notice how much cleaner the lines are. But if you look closely and compare the trailing edge of the wings, especially around the outer extremities, you’ll see the same old design, although it has now become so modified that you’d hardly notice it if you weren’t looking for it.

But let’s go a step further. Look at 3-B. There she is in 1916-7. Still slicker. And, children, don’t let anybody tell you them wasn’t airyplanes for them days!

New Models—And Newer Ones!

So, you see, the powers behind the guns were throwing out new models faster than the automobile manufacturers do today. They wanted to have the very best airplanes they could get.

So, the engineers and manufacturers were busy night and day figuring out ways to improve the ships, and as soon as they got a new idea they would build a group of experimental ships and send them out with all the improvements for us to try out.

And since I mentioned experimental ships, it looks like a good chance to slip you a bit of information that might come in handy when you are looking at war crates. Whenever you saw a ship and the caption told you it was a Handley-Page S.E. 5, or a something else, R.E. 2, or whatever, did you ever wonder why they strung out that alphabet and numbers after the name of the ship just like a professor with a lot of A.B.’s and X.Y.Z.’s after his name? Well, here’s the dope.

Identification Letters

The British used a series of identifying type letters based on this system. Mons. Bleriot was credited with originating the tractor type airplane, so they designated the tractor types B.E. plus the number of the particular experiment of that company in building a tractor ship.

Farman was credited with originating the pusher type, and those types were Farman Experimental such-and-such a number, or F.E. 2’s or 3’s or whatever.

And also, they used other letters to indicate the duty for which the ship was to be tried out. Thus this table which you should always carry in the pocket of your Sunday pants:

B.E. was Bleriot Experimental.
F.E. meant Farman Experimental.
R.E. meant Reconnaissance Experimental.
S.E. meant Scouting Experimental.

And now I want you mugs to memorize all I’ve told you right quickly, or I’ll use EM on you, which means Eddie McCrae will experiment with breaking your heads.

How the War Crates Flew: Wings—and Why

Link - Posted by David on April 16, 2024 @ 6:00 am in

FROM the pages of the August 1934 number of Sky Fighters:

Editor’s Note: We feel that this magazine has been exceedingly fortunate in securing Lt. Edward McCrae to conduct a technical department each month. It is Lt. Mcrae’s idea to tell us the underlying principles and facts concerning expressions and ideas of air-war terminology. Each month he will enlarge upon some particular statement in the stories of this magazine. Lt. MaCrae is qualified for this work, not only because he was a war pilot, but also because he is the editor of this fine magazine.

Wings—and Why

by Lt. Edward McCrae (Sky Fighters, August 1934)

NOW I don’t remember of any of you duck-billed flamingoes stepping up and asking me what it was that made a war crate fly—when it did fly. Maybe it was because you had a suspicion that it was because of the wings. And then again, in case you had guessed that much, I thought maybe you’d be wondering just how it was that the wings sustained the ship, even admitting that you knew that the motor gave it sufficient power to propel itself through air.

Well, if you want to give up and learn something, I’ll tell you something about that today. And while I’m at it I suppose this is the best time to explain why some of the ships were monoplanes and some biplanes and even some of them triplanes, as one of the members of the German Albatross family, and one of our own Curtiss ships, as well as others. Wake up and listen to some real scientific information already predigested so it won’t get stuck in your delicate brains.

The answer Is this; when the ship is driven forward by a motor, the wing is so shaped that the air passes over and under the wing according to the “camber” of the wing. The camber is the shape it is in cross section. Take a look at Fig. 1 and you’ll see what I mean.

You’ll notice that the wing is rounded in front, gets thicker and then tapers to almost nothing at the rear or “trailing” edge. The distance from the front to the back is called the chord of the wings. You will see that the air is diverted upward and forms a kind of vacuum or area of reduced pressure over the wing. And also that some of the air hits the under-surface.

The Lift of the Ship

The lift of the ship is caused by the vacuum over the wing and the upward pressure of the wing on the under surface. And it may surprise some of you knot heads to know that the vacuum above the wing furnishes from three-quarters to in some cases ninety-eight per cent of the lift, and therefore the pressure from underneath furnishes from a quarter down to as little as two per cent of the lift.

Now, during the war the engineers knew that the amount of lift a wing surface had depended somewhat on the thickness of the camber and the shape of the wing. A wing that was thick at its maximum depth would naturally shoot the air higher over the wing and form a greater vacuum and thus give more lift. But when it did that it also reduced the speed.

What they wanted, then, was some way to get around that if they could. So, they knew that the greater the wing surface the greater the lift. If you wanted to lift a thousand pounds you would have to have a certain amount of wing surface of a thin camber, but more surface if the camber was thicker.

They Built More Wings

What is more natural, then, than to build more wings, one on top of the other. Take a look at the Albatross airplane as an example. (Fig. 2)

They had a lot of problems. They wanted ships for speed and carrying light weights. These would be the scouts and fighters. They needed others to carry heavy weights.

So they designed ships with wings like the ones shown in Fig. 3. The wing in 3-A is the section of a bomber. It will lift heavy loads, but it flies slowly because it cuts the air at such a steep angle to the line of flight, and it has a slow speed. 3-B shows a wing that will carry a fairly heavy load, fly a little faster and not land too fast. It was used on some training planes, like the old Curtiss Jenny. 3-C would have a much higher flying speed and would be used for reconnaissance and work that took fast maneuvering. And the last one of the wings would be found only on the fastest ships, fighters that had to get places in a hurry.

I remember the first one of these babies with a flat lower camber that came out to our little orchard at Ypers. Bill Bradley who claimed he could fly anything, looked at it and grunted and said, “Hell, that’s nothing but a barn door equipped with a motor and undercarriage. Crank ‘er up and I’ll fly her, though.” And, listen, Mary Jane, he did just that.

So whenever you’re loafing around a flying field and see a pair of wings that are flat on the under-side, just grab your dresses and run, because that ship can get places.

Now, let’s follow a bird that wants to design an airplane and see how he goes about deciding what kind of wings he’s going to put on it. The first question that comes up, of course, is, what you want it for. Say, for instance, we want it for photographing work, or light bombing. At any rate, we want it to carry about two thousand pounds of weight and make reasonably good speed. We don’t want too much speed in landing because the load it carries is delicate, the machine will be heavy and will have to land slowly.

We’ve Learned by Mistakes

Now we’ve learned by the mistakes of others that the average machine will carry about two-thirds of its own weight, or a ratio of 40 per cent cargo to 60 per cent dead weight. That being the case, the ship we have to build must weigh three thousand pounds in order to carry a useful load of two thousand, a total then for ship and cargo of 5,000 pounds.

Now the next thing is how much lift is needed. We know that for an average speed with an average load, with an average motor, the ship should have a lift of seven pounds for every square foot of wing surface. The problem is, how much wing surface will we need to lift five thousand pounds.

Get out your slate Johnny and figure that out. It’s easy. Just divide the total five thousand pounds by seven and you have about 714 square feet of wing surface needed.

Now, shall we supply that 714 feet all in one wing, or break it up into two wings? We figure this way; engineers have learned that the span of a wing across the front of the ship should be at least five times the chord, or depth fore and aft. Now if we tried to build a monoplane on those proportions and got our whole 714 feet of wing surface in it we would have a wing which would be seventy feet across and about ten feet deep.

They’re All Metal Now

That’s not so much of a problem in these days, because of all metal construction that has been perfected since the war. But in those days we had spruce and linen and wooden and wire construction. So, to have built a ship out of wood and wire with seventy foot wings wouldn’t have been so hot. I can promise you, Tilly, that plenty of ships shed their wings when they weren’t even as broad as our seventy-footer.

So, we’ll cut the wings half in two and give 350 feet square to a top and bottom wing. This will allow us to strengthen each wing by bracing it to the other wires and struts. Now we’ve got two wings that aren’t so flimsy, each fifty feet across and only seven feet deep. That’s more like it.

And that’s the way they went about it. And also, that’s the reason you didn’t see so many monoplanes in the Big fracas. Ships were flimsy things and they had to strengthen them as well as they could.

More Monoplanes Today

The Germans had been experimenting with light metal, however, in their Zeppelins, and before the war was over they had constructed a good monoplane with internal bracing that was strong enough to keep it from shedding its wings. But not the Allies. Of course, after the war, the Allied countries got busy and made up for the lost time, and today you see probably more monoplanes, and certainly in the more expensive ships, than biplanes. It saves a lot of external braces and things that offer resistance to the wind, unless its speed you want.

So that, little children, is how the engineers worked day and night to build ships for men to knock out of the sky, and that’s how they learned to finally build ships that are today safer than automobiles, if you believe in insurance statistics, which always tell the truth.

And here’s another truth—it may be stranger than fiction, that business about a ship being lifted by the top side of the wing instead of the underside—but truth always turns out that way.

So, believe it and like it, you flamingoes, while I go out and rip off a couple of wings.

How the War Crates Flew: Personal Gear

Link - Posted by David on February 20, 2024 @ 6:00 am in

FROM the pages of the July 1934 number of Sky Fighters:

Editor’s Note: We feel that this magazine has been exceedingly fortunate in securing Lt. Edward McCrae to conduct a technical department each month. It is Lt. Mcrae’s idea to tell us the underlying principles and facts concerning expressions and ideas of air-war terminology. Each month he will enlarge upon some particular statement in the stories of this magazine. Lt. MaCrae is qualified for this work, not only because he was a war pilot, but also because he is the editor of this fine magazine.

Personal Gear

by Lt. Edward McCrae (Sky Fighters, July 1934)

DO YOUSE boys and youse goils remember the little ditty which goes:

      The time has come, the Walrus said, to talk of many things,
      Of shoes and ships and sealing wax, of cabbages and kings.

Anyway, I was sitting back in my study and looking at all the souvenirs hanging around on the walls and my mind got to wandering back to the days when we collected those scalps. Did you ever sit and let your mind wander and see just how it jumps from one unrelated subject to another? That’s the way I was doing.

More Than Cold Facts

I took a notion to jot down the things as they came to me, and when I got through I looked at what I had written and it just occurred to me that though they were interesting, most of them were in themselves of such little importance that people hadn’t written about them, but that on the other hand they were bits that go to fill in the chinks of war-air history. A kind of seasoning that makes the whole stew more intimate.

They make you feel like you have a more personal knowledge of flying than just the cold facts of airplanes.

Differences in Headgear

They’re the little personal touches. Like this:

Look at those helmets hanging on the tips of that propeller. Who has ever thought to mention little differences in headgear? Look at Fig. 1. First, there’s an old crash helmet. That is a German one. It looks like a mixing bowl. It is padded inside and has a padded rim around it. The leather is heavy—sole leather. You got plenty of crashes in those days and that old inverted bowl probably saved its wearer getting many a bump. It may have saved his life a few times.

And look at that “Gosport,” the one with the rubber tubing which runs from one helmet to the other. That was invented by an instructor who took the tubing from his air speed indicator and rigged up the helmet so he could give orders to his pupil. They’ve been standard training equipment ever since.

And look at that funny looking little gadget. Know what that is? It’s the upper end of a silk stocking belonging to the flyer’s best girl. It’s made into a skull cap to wear under the helmet at the right. It keeps your hair from getting soaked with motor oil and keeps your hair from whipping into tangled knots, keeps your head warm and brings you luck—if your girl’s true to you. If she’s not—better get another one from some other gal.

And the rag that’s tied to the top of the helmet in the left and stands out backward like a knight’s plume serves the purpose of wiping the grease off your goggles when they get blurred. Oil pipes are always cracking from vibration or being shot in two, and it’s handy to wipe hot oil off so you can see where you’re going.

Some Uniforms!

And that reminds me of the time when Ross came back to the field spattered with oil after a dog-fight and landed just in time to stand inspection by a visiting brass hat. Although we were attached to the British we had to wear the American type uniform at that time.

You had to wear a starched collar and the tunic had a stand-up collar. They jumped on Ross for having his collar unbuttoned. And Ross was plenty hot under the collar, anyway. So he risked a court-martial, and did he tell off that big bug about making men fly while being choked to death by a uniform.

It may be a coincidence, but Ross didn’t get into trouble for sassing a big shot, and it wasn’t long before we wore soft shirts, and still later the whole uniform was changed. A man can wear one now and not have his jugular vein sawed in two. See the difference in Fig. 2.

Ross just blew up and got off his chest a lot of things we were all griping about. We were Americans and proud of it, but we took an awful licking from the Brass Hats. The British were teaching us to fly and treated us like gentlemen. But our own big bosses figured we rated lower than dishwashers, apparently.

Them Was the Days—Nix!

They were against giving us commissions, and even took our flight pay away from us. That’s the way the army feels about flying. They object to there being a separate Flying Corps like the other major countries have. They want to run the flying show, but they want to handle it like they do the ground forces. That’s like trying to make a man a good swordsman by making him take pistol practice. You can’t make a good flyer by teaching him to march and stand at attention in a choker collar while the big shots strut in front of him.

But we made out in spite of our handicaps. We had to figure out a lot of tricks and do things the books don’t teach. Like the time Sprague had the magneto shot to pieces in his Camel.

We were in a bad way; couldn’t get replacements. And we didn’t have an extra magneto on the field. Sprague knew that a mag on a certain type German ship would do the work, so he went out and found a German and crashed him inside our lines and got himself a German and a magneto.

The Wonder Boy

Which reminds me of Sprague, the wonder boy. He was very young, but he’d been everywhere in the world and he made a specialty of being able to look out for himself. Earlier in the war he’d been shot down by a famous German ace, but that German, popularly credited with being a great sportsman, followed him down and kept pouring lead into him. The result was that he lost a leg just below the knee.

You’d think that would stop a man—but not Sprague. He pulled the wires some way and was back flying a ship with only one good leg. He had a gear rigged up on the rudder pedal so he could control it with one foot. Then while he was at it he went one better. He fixed up a little harness that attached to the stump of his leg and from that to the stick, and that boy could steer a ship with both hands free! He always carried a few hand grenades with him when he went out to fight.

Mystery Leg

But that wooden leg was the thing that had the whole western front puzzled. I knew him and got to find out about the mystery. It was just the length of his service boot which he had had built around it. When he got into his ship he would unstrap it and rig his leg to the steering apparatus. He ran up a lot of notches on his joystick in about this way. Germans, like the Allies, would try to get between the enemy and the sun, and then dive down on you while you couldn’t sec them for the glare.

However, you can hold your thumb up between your eye and the sun, so the sun is hidden by your thumbnail and you can see anything in the sky except it is directly in that small blind spot in front of the sun. But you can’t fly all day with your fist up in the air and staring at the sun.

What a Trick!

So Sprague painted a tiny black spot on one eye of his goggles, a spot just big enough to hide the sun itself, and with it he could keep a close lookout in the direction of the sun. Then he’d fly along in dangerous territory, but keep a sharp watch into the sun. A Heinie would dart down, figuring that Sprague would be unable to see him, and Sprague would fly along as though he didn’t know the German was coming—until the very last minute.

The German would be so confident of his kill that he wouldn’t be quite as alert as he should be. Poor Germans. More than twenty made that mistake before one of them downed Sprague, and made him a prisoner.

He Thought of Everything

And now back to the prison camp where they marched Sprague. And next morning Sprague was back with us! That boy thought of everything in advance. He couldn’t see any use in wasting all that space in that wooden leg of his.

The result was that it was a regular kit bag, fitted out for all purposes. When he showed me how he had hollowed it out and packed it, I saw, among other things, a small pair of wire clippers; a map of the sector we were flying in; some Swiss money in bills (Swiss because of their neutrality, and useful in case he had to escape from the interior of Germany and work his way back to French soil); a bottle of malted milk tablets; a flint and steel to light a fire; a tiny bottle of poison tablets; a package of Bull Durham smoking tobacco and papers, and a hand grenade!

That might sound to you youngsters—wipe your nose, Charlie—like a silly collection of things. But, as I said, Sprague was captured by a German—and was back home before morning.

Take a look at the list. See Fig. 3. He didn’t have to use everything in it, but you can see where he might have needed them. As it was, they threw him into a barbed wire enclosure with other prisoners to await transportation back into the main prison concentration camps. He cut his way out with the wire clippers under cover of darkness.

Swiss Money Useful

The map would have come in handy if they had carried him farther back of the lines. If they had carried him all the way to Germany and he had been able to escape, he would have tried to make his way to neutral Switzerland. He could have kept concealed, have built a fire with his flint and steel, to keep from freezing, he had emergency rations and even the makings of cigarettes. Having Swiss money, he could have bought things in places where they weren’t neutral because they all recognized Swiss neutrality.

And the bottle of poison? You never can tell in a war when perhaps death would be better than some of the things you have to go through—particularly if the enemy is trying to get information out of you that would spell disaster to your friends and your country.

Not Junk At All

And the hand grenade! You could blast your way out of a prison with one of those pineapples, or you could stop half a dozen men pursuing you. Sprague was partial to those little handfuls of explosive, and he managed to get them someway wherever he was, even though they weren’t issued to flyers. One time he did a loop over a man in a dog-fight and dropped one of the nuggets into the German’s cockpit. It rained tiny bits of Albatross and Hun for several minutes after that.

So, you see, you knot heads, that leg didn’t contain a junk shop after all. Most of us carried as much of that kind of gear as we thought we could hide—but we didn’t all have wooden legs. And so, sometimes, we were caught without some of these handy, all but essential, objects.

How the War Crates Flew: War-Air Stunts

Link - Posted by David on January 16, 2024 @ 6:00 am in

FROM the pages of the June 1934 number of Sky Fighters:

Editor’s Note: We feel that this magazine has been exceedingly fortunate in securing Lt. Edward McCrae to conduct a technical department each month. It is Lt. Mcrae’s idea to tell us the underlying principles and facts concerning expressions and ideas of air-war terminology. Each month he will enlarge upon some particular statement in the stories of this magazine. Lt. MaCrae is qualified for this work, not only because he was a war pilot, but also because he is the editor of this fine magazine.

War-Air Stunts

by Lt. Edward McCrae (Sky Fighters, June 1934)

NOW I bet you dumb clucks have been reading about air fighters and duels in the air for a long time. Everybody has. You get thrilled to death when the hero barges head-on into the Hun, gives him a round of tracers and lead, noses her up, falls off on a wing, dives, comes up into an Immelmann and is on a level with his foe again, and they go to it. Dog-fights!

Now if I know you, you just sat there and got a thrill out of the yarn, but the ships were darting through the air so fast and there was so much fighting that you couldn’t follow their movements exactly. You just knew they were doing something, but how they did it, didn’t bother you.

That’s all right because you were not supposed to know the whys and wherefores of the maneuvers. You were just supposed to enjoy the story which you did.

But that’s all over. The next time you read a story you’ll know just exactly what the Red Ace was doing when he did an Immelmann and a barrel roll—and you’ll know why he did it. Then you can check up on all those writer fellows to see if they knew what they were talking about.

Because today, Jack and Jill, you’re going to learn how they did those maneuvers and why. You’ll notice that at the top of this article there’s something that talks about principles and facts and war-air terminology. That’s what you’re gonna get an earful of right now. So wash out your ears.

The Simplest Thing First

Let’s start with the simplest and first thing a war flyer has to learn to do when he gets past the Kiwi stage. He has learned to do ordinary flying, and now he’s getting down to the business of learning how to defend himself and how to whip the other man.

Let’s follow him through one of those famous and exciting dog-fights and see why he does these things. After all, he’s not up there just to furnish thrills for you readers. He’s got business to do.

He’s already off the ground and has gained his ten thousand feet altitude. He’s one of those lone eagle boys who’s out looking for a Hun for an early breakfast. Downstairs the ground is all shell marked and rows of gray trenches look like the canals of Mars to him.

Then, suddenly, out of a cloud above him that looks no bigger than a man’s hand comes that well known little black speck, diving straight down at him. It’s an Albatross! He is being attacked!

Let’s stop right there in the story. We’ll have a look at the “why.”

Don’t Look into the Sun

The German had got the best position to start with. He had got up earlier and had taken up a favorable station. The station was behind a high cloud which in turn was so located in relation to the place he might find an enemy, that the enemy might have little chance to see him. Our hero couldn’t see through a cloud. And the German had borne in mind that the cloud was between that proposed battlefield and the sun. Thus if the American were looking for him, he would look squarely into the sun and this would blind him. You can’t see a tiny speck—in fact you can hardly see anything—when you’re looking into the sun.

But let’s go on with the story. What does our hero do? He sees the Albatross bearing down on him with tracers blazing. So he reverses his controls and makes a sharp turn out of the line of fire. (Fig. 1)

Reversing Controls

What is this reversing controls? No, Jill, it’s not like throwing an automobile into reverse. Airplanes can’t normally go backward in the air. They aren’t crawfish.

What he did was this. He had to make a turn so short and so quickly that in order to do it he had to bank so steeply that the rudder was cross-ways instead of up and down like it should be, and the elevators were up and down instead of crossways. The result of this was that he had to control his ship differently.

The wings were one up and one down instead of horizontal. Therefore, in order to control his ship, where before he would use the rudder, now he had to use the flippers or elevators for that purpose. And vice versa with the rudder. And all this time bullets coming at him!

You would think this would be confusing, wouldn’t you? Well, it is! But the boy had to learn to do it automatically—without even thinking about it, before he could go on and learn all the rest of the things he had to know!

Something to Remember

Reverse control is the important element in any sharp turn which makes it necessary to bank at an angle of more than 45 degrees. Don’t forget that, children, and you’ll have more respect for the poor flyer.

But that’s not all—it’s just the beginning of those little tricks he had to learn. That maneuver can be dangerous, and it always results—when control is lost—in a spin with the power on. And is that dangerous? Ask your Uncle “Spinner” Eddie.

So, in order to get out of such a predicament in case it happened—and it’s sure to happen—you have to deliberately learn to spin your ship and bring it out of a spin. You can’t wait until you accidentally find yourself in a jam to practice getting out of it. You have to know how in advance. It’s something like practicing driving your car over a cliff. They make ships these days that won’t spin, but they are for old-lady passengers and students to ride. A fighting ship must be able to spin, because sometimes you will want to spin it.

      “But Von Hun was on his tail, pouring a deadly volley—”
      “The Red Knight saw death staring him in the face. There was only one means of escape. Shoving the throttle forward to pick up speed, he jammed the stick forward and to the left and kicked the rudder. The ship nosed down into a power spin—”

Now why did our hero do this? Well, children, did you ever try to shoot at a leaping jack rabbit? He has plenty of speed and he’s not going in a very straight line. You can’t tell a second in advance where he’ll be the next second. And when you multiply that by the speed of a ship whirling down like a corkscrew with the motor full on—you’ve got a real job of target practice ahead of you! (Fig. 2)

Our Hero Escapes

So our hero escapes. But the Hun follows him down. He levels off and turns to meet the Von! He squeezes the triggers of the Lewis gun on his stick and sews a seam of lead up the leg of the Von’s Sunday pants. Von Hun is in dangerous territory with the Red Knight headed straight forward. Von Hun, to escape being rammed, falls off on one wing.

What the Von did was a side slip. He wanted to drop below the Red Knight, so he throttled down to lose power, banked his plane so one wing was down and jammed on opposite rudder. The rudder threw the nose down with the wing and headed the ship into a straight dive with one wing low. In order to straighten out he had to level off the wings and there he was all set, but on a lower plane and behind the Red Knight.

The Immelmann

But he climbs rapidly and is again hovering over the Red Knight. But our hero won’t stand for “that. He wants that position himself. So the Red Knight dives to pick up speed and then hauls back the stick. The ship loops in a big up-and-down circle that carries him above Von Hun. And as he comes down in the last part of the loop he manages to get in a burst that dusts off the Von’s uniform.

This is partially effective and Von Hun is trying to get out of the way. So our hero tries it again. He goes into the loop, but at the top of it he sees Von going the other way. To finish the loop will take him further away from Von. So “at the top of the loop he suddenly executes an Immelmann turn,” and is headed for the enemy, guns blazing. (Fig. 3)

What’s this Immelmann thing! Well, at the top of the loop our hero is naturally upside down and as he comes out he will be headed West at a lower altitude. But he wants to stay up there headed East.

So, just before the ship reached the top of the loop our hero pulls the stick back all the way and jams his rudder forward. The effect of this is to turn the wings over and get him right side up with care, just like the first turn of a barrel roll. And there he is headed West a little above the tail of Von Hun.

Which makes the Von sweat under the collar, so the Von eps his tail out of the way by doing a wing-over and coming back to meet The Red Knight. He does this quickly by nosing his ship up sharply and dropping one wing. He canteen keep it up until the ship stalls, at which time he falls off on one wing and completes his turn. He hasn’t lost altitude and he is back facing the way he came from on the same path instead of being over to the left or right.

And it is then that our hero triggers hs weapon and finishes him. He simply outshot the German. You’ll find out about how I did that over in the fiction department—second door to the left.

So you see, my young scallions, all that monkey business about loops and turns and chasing each other’s tails and all that sort of stuff isn’t put in there just to make a holiday for you. Every maneuver is there for a certain purpose, to aid the flyer in getting out of the other’s way, or to get into a favorable position for himself. They’re not stunt flyers just trying to entertain you. They’re in the glorious business of being knights of the air, lone fighters just like the old knights, to kill the enemy. And all those tricks are part of their trade.

How the War Crates Flew: Aerial Armament

Link - Posted by David on November 7, 2023 @ 6:00 am in

FROM the pages of the May 1934 number of Sky Fighters:

Editor’s Note: We feel that this magazine has been exceedingly fortunate in securing Lt. Edward McCrae to conduct a technical department each month. It is Lt. Mcrae’s idea to tell us the underlying principles and facts concerning expressions and ideas of air-war terminology. Each month he will enlarge upon some particular statement in the stories of this magazine. Lt. MaCrae is qualified for this work, not only because he was a war pilot, but also because he is the editor of this fine magazine.

Aerial Armament

by Lt. Edward McCrae (Sky Fighters, May 1934)

NOW if you featherless kiwis will perch yourselves on the back of those chairs across the room, I’ll tell you some things you didn’t know about how all of this aerial warfare started. It would almost make you laugh, but don’t try it while I’m talking.

A few pre-war aviators had been preaching the virtues of the flying machine as a weapon of war, but the lawmakers with their customary brilliance laughed at the idea and dismissed it. However, they got wise to themselves pretty quickly when the guns started booming.

Airplanes, even though they were winged box-cars, proved invaluable for scouting, dropping bombs by hand, and dropping propaganda literature in enemy territory. And during the first months of the war you couldn’t knock down one of these machines either from the ground or from other airplanes! You dodged ’em and liked it.

He Thumbed His Nose At ’Em

You’ll remember that the German, Immelmann, flew low over Paris every afternoon at cocktail time during a certain period early in the war, and dropped small bombs on the Frenchmen’s conks. People in the street fired millions of shots at him with rifles and pistols. Even taxi drivers stopped their machines while they and their passengers got out and peppered away at the old boy, but he just thumbed his nose at them and showed them his tail.

That’s what we had to buck up against. And then Roland Garros got mad and changed the whole show. Here’s how:

Now if your brains aren’t too dusty you’ll remember that old-time French aviator Garros had already become a hero. But the Germans in the air were interfering with his business of diving down upon enemy factories and bridges, etc., so he decided to interfere with them for a change.

Some InventionI

Up until that time the nose of an airplane was the safest blind spot of all, for if any solid substance touched the whirling propeller, the blade was more than likely done for.

But that old pal of mine, Garros, made it about as safe as the action end of a mule. He invented a machine-gun that would fire through the propeller, and on that day on the nose of a ship ceased being a blind spot and became its business end—the opposite one from that of a hornet.

Before the Germans could realize what had happened, little Roland had tickled five of them in the ribs with bullets.

The Boche Took It Over

And while we’re on the subject of mules—the Germans got the horse laugh on him. While Garros was on one of his famous raids his motor conked, and he and his machine fell into the hands of the Germans before he could destroy it. Thus he delivered to his enemy the very device he had perfected for the purpose of destroying them.

They took over his invention and put it to good use, as you will see.

Now stay awake a little longer, sister, and see why this most famous of French flyers made the greatest of all single contributions to aerial warfare.

When the war broke out in 1914 we heroes were armed with a short rifle. Some of us even carried shotguns!

This sounds rather silly, but they were better than no weapons at all. And don’t I know it! They were of very little value, however, because you couldn’t hit the side of a barn with them. The wind blew against the extended barrel when you aimed them and the ship vibrated so much that you couldn’t have hit your own wing with them from your cockpit.

Did you say that carrying a shotgun was silly, Mabel? Well, listen to this:

Why, you dumb chicks—we carried brick-bats—and that’s no kidding.

Silly? The French brought down two German airplanes with these alley apples!

A Brick-Bat Hero

The idea was to get close enough to the other ship to drop or hurl a piece of this Irish confetti through the other man’s propeller and shove his nose in the mud. Your Uncle Dudley was a brick-bat hero.

Then just a month before Garros invented his gun, the French armed their fighting Nieuports with twenty-pound Lewis guns on their upper wings. Take a squint at Figure 1. The gun was mounted parallel with the line of flight and fired over the top of the propeller. It was aimed by pointing the airplane itself, and was fired by the flyer in the cockpit pulling a string. It was a great improvement over brick-bats, and the Germans quickly adopted it. But a magazine held only forty-seven cartridges and when the flyer had used them up he had to make a landing to reload.

Then up pops our hero Mr. Garros! He mounted his new invention on the engine hood so you could get your hands on it. The gun shot through the arc of the propeller blade. He learned by experimenting that only seven per cent of his bullets would hit his propeller. So he protected the propeller blades with steel bands and let ’em hit.

What a Gun!

The bands reduced the efficiency of his propeller but, “Voila!” He had a gun that was a gun. And he sighted it much to the misery of the Germans, until they got their hands on him.

Six months later the Germans, using the Frenchman’s invention, improved it by synchronizing the action of the trigger with the propeller shaft. From that day to this there hasn’t been much picnicking in the air. Now, my little hollow-heads, take out your slates and listen to some arithmetic. You ought to know this without being told.

A Simple Principle

The principle of the synchronising of the machine-gun is very simple. If a single two-blade propeller revolves before the nose of a gun at the rate of 1,500 revolutions a minute, a blade of the propeller will pass the muzzle 3,000 times. But there are also 3,000 empty spaces where there is no propeller blade in front of the gun. Now, if the gun fires 500 shots a minute it is a simple mechanical problem to operate the weapon mechanically from the motor, so that the gun fires once through every sixth of those empty spaces.

The Germans’ well known Fokker was the first ship to blossom out with one of these new-fangled weapons. But the same thing happened to one of Tony’s ships that happened to Garros’. A Fokker sat down to rest among the Allies, and very soon Spads, Camels and all manners of Allied planes adorned themselves with this new decoration. And today it is more in style than ever.

A New Toy For Peelots

It was more than two years before anybody could think of a new toy for the flyers to play with. Again it was a French Ace, who was later to die with fifty-three victories to his credit, second in France only to Rene Fonck, who thought up this cute little gadget.

Georges Guynemer converted the front end of his crank shaft into a hundred-and-fifty-pound cannon! It fired one-pound shells of several types.

Guynemer worked a long time on this gun and did much to perfect it. With it he brought down his forty-ninth, fiftieth, fifty-first and fifty-second antagonists. The shell was too large to be safely fired between the propeller blades, so it was designed to shoot through the hub itself. Look out for it in Figure 2.

The gun was built into the crank case, and its breech and shootingmechanism were within easy reach, while the muzzle of the gun protruded through the hollow propeller shaft for a distance of two inches beyond.

Semi-Automatic

To begin with, it was semi-automatic, the gun ejecting the empty shell, but the pilot reloading. This work required several seconds, and an airplane traveling at 150 miles an hour could be hopping out of tne range at the rate of 220 feet a second. By the time a flyer got his gun loaded he might find positions reversed and his enemy in charge of the situation.

So they worked this out and eventually developed an arm that would fire 120 shells a minute, each weighing a pound and a half. The catch in the use of this gun, however, was that it would shoot 180 pounds of ammunition a minute and itself weighed 150 pounds. It would take a flying freight train to carry enough ammunition to last it very long. Also, all this weight naturally slowed down the machine. A man with a light ship, a twelve-pound gun shooting rifle cartridges could fly circles around him. But when you hit a ship with your cannon that ship stayed hit.

So it was that as soon as the airplane had established itself as a supreme weapon of war, more attention was given to the effectiveness of its guns.

The Hague Convention had agreed that no explosive projectiles of size less than one-pounders should be used in civilized warfare in order to avoid unnecessary human suffering. But very early in the fighting, two American boys in the famous Lafayette Escadrille were shot with explosive machine-gun bullets! The Germans claim that the British first started breaking the rule and that they used them in retaliation. Naturally!

A Strange Weapon

Thus it was that there was a constant search for the best and most destructive weapon. I once tried out the strangest gun that ever perched on a war crate. It was a one-pounder for seaplanes, and it shot a charge out of both ends of the barrel at the same time! And my name is not Ripley! Nor Baron Munchausen!

The barrel was extremely long (see Figure 3) and the shell was inserted in the side at the middle of its length. The regular projectile was aimed downward at an angle while the other one was discharged backward over the ship. The latter consisted of a mixture of heavy grease and very small shot and was for the sole purpose of offsetting the recoil of the gun. On its flight through the air the grease caught fire and destroyed the tiny shot.

Now you kiwis can hop down off your perches and go out and chirp about your knowledge of gunnery. And try to get through talking before I get back next month.

P.S.—You might be interested to know that the Germans had such a hard time holding Roland Garros prisoner that they made him sign a book in the prison office every thirty minutes for two years. But he finally escaped and went back to fight some more.

How the War Crates Flew: Gas Bags

Link - Posted by David on October 10, 2023 @ 6:00 am in

FROM the pages of the April 1934 number of Sky Fighters:

Editor’s Note: We feel that this magazine has been exceedingly fortunate in securing Lt. Edward McCrae to conduct a technical department each month. It is Lt. Mcrae’s idea to tell us the underlying principles and facts concerning expressions and ideas of air-war terminology. Each month he will enlarge upon some particular statement in the stories of this magazine. Lt. MaCrae is qualified for this work, not only because he was a war pilot, but also because he is the editor of this fine magazine.

Gas Bags

by Lt. Edward McCrae (Sky Fighters, April 1934)

PRACTICALLY everyone of you young whipper-snappers that I have run across has the idea that you are living in the golden age which saw man first conquer the air. And for that reason you’re a big-headed and puffed-up lot of gas bags.

We’ll I’m sorry to have to knock the undercarriage out from under you and let a little hellium out of your inflated hides, so to speak.

The truth of the matter is that Napoleon used an aviation unit in his army. In the year 1794 a Captain J.M.J. Coutelle made the first military balloon ascent in the history of warfare. He was the world’s first military balloon observer.

At the Battle of Fleurus in Belgium during that year it was through his work as a spotter for the French artillery that the French won a victory. His observation balloon was in the air for several hours, always out over No-Man’s-Land. Much of the time he flew over the enemy’s army. He used the first hydrogen-inflated balloon, the result of his own experiments.

He later organized the world’s first balloon corps, which Napoleon used in his wars until it was destroyed during his campaign in Egypt. In the seventeen-hundreds, my children!

The First Dirigible

The first dirigible airship, the grandfather of the present Zeppelins and our own great Akron, was designed even before this date. It was the invention of a French army officer and it made use of the small ballonets which are found in the airships of today. This was shortly after the first man ever soared into the air, which happened in 1783. You ground-looping, high-chair aviators probably don’t know it, but this was going on at about the time that America was just drawing its breath after the American Revolution.

Lincoln Used ’Em

I know there’s no use in trying to cram your thick heads full of history because it would go in one ear and out the other, since there is nothing in there to stop it. So, I’ll just mention in passing that during the American Civil War old Abe Lincoln used observation balloons. And here’s something that maybe you know-it-alls didn’t know. Graf Zeppelin was an official observer attached to General Grant’s army! It was here that he made his first ascent, which resulted in his devoting the rest of his life to the dirigible, the first of which he built in 1900.

The skipper says that my job is to tell you ballonets how the war crates flew. (You remember I told you that a ballonet is a gas bag.) So, to tell you how things flew I suppose I’ll have to remind you from time to time why people wanted them to fly. Which brings us down to 1908.

The American government offered $10,000 for a “practicable military means of dirigible aerial navigation.” Such a ship was built and the Army bought it after it was test-flown at thirty miles an hour. It was ninety-six feet long and powered with a twenty-horse-power engine. Instead of having a gondola suspended under the cigar-shaped gas bag, it had an open bridgework, like the skeleton of an uncovered fuselage, upon which the aeronauts ran back and forth like a couple of monkeys in a high cage. The ship was attached to the Signal Corps. See Fig. I.

Now if you are properly humbled, and want to admit that you didn’t know there was such a thing as a flying machine before the World War, I’ll start the lesson proper. And cut out that snoring before I wrap a propeller blade around your neck.

German Dirigibles

The Germans went in for dirigibles in a big way. The whole layout or scheme of the fracas made it possible for them to use lighter-than-air craft to much better advantage than to the Allies. Just in case you don’t happen to have a war map in your pocket, I’ll try to explain the situation so that even you can get a picture of it.

The war was fought in Allied territory. The German armies were away from their home grounds. Therefore all the destruction of cities and towns was felt by Allied countries. The Germans were out to capture their enemy. The Allies’ task was to defend themselves.

Now it was a long way from the heart of Germany to Paris and to London and to the Allied centers which made up the heart of their activity, such as munition works, supply and shipping bases, and centers of population. These things the Germans wanted to destroy, while at the same time they wanted to break the morale of the non-combatant population.

Lighter Than Air

Dirigible balloons were strongly in favor for these purposes. They were self-lifting, or lighter than air, and therefore could stay aloft a great length of time without the danger of making forced landings in enemy territory on account of engine failure.

They were able to carry enormous loads of explosives a great distance, drop them, and return to their bases. Such machines making these long trips under cover of darkness had a great advantage.

They Cost Money!

These big babies cost a lot of money, and when you knocked one of them down you destroyed over a million dollars worth of fighting gear and very likely killed a considerable number of highly trained specialists. So, you see, their bases of operation had to be pretty safely located in a spot where there was little danger of destruction from enemy guns and aircraft. Since the theater of war was not in their home territory the Zeppelin bases were fairly safe from destruction. Only a few of them were successfully raided.

Such was not the case with the Allies, whose territory was always subject to attack. Thus it was that the Germans could, and did, make more use of lighter-than-air craft.

Plenty of Bombardment

During the course of the War the Germans bombarded England with Zeppelins fifty-three times! They raided London, itself, twelve times. In all, their dirigibles dropped 275 tons of bombs on English soil. See Fig. II.

And over fifty air attacks were made directly upon Paris!

Kite balloons also played their own important part in the fighting. These small round and sausage-shaped babies did their invaluable work in spotting. Practically all battle lines had them tugging at their cables high above the fighting while their observers, with binoculars glued to their eyes, reported the results of shell fire upon enemy batteries by telephone.

A Hot Time

Naturally such effective eyes were the centers upon which the enemy would congregate in desperate efforts to blind them. Not being able to maneuver their gas bags, the balloon observers had a plenty hot time of it on either side. Maybe you remember young Frank Luke. That young former cow puncher used to go out and knock down three or four German sausages before breakfast. He ran up a record of over fifty of them lone handed.

The story of balloons during the World War is one that has not been sufficiently told, and by the very nature of it, cannot be. Because the only ones that could have told the story of their individual dramas were killed while that story was being written. But even so, the balloons did furnish many exciting chapters.

One Well Known Incident

Take, for example, one well known incident. The Germans were making their famous drive on Paris, and were within fifty miles of its gates. The Parisians were frantic with fear for the safety of their women and children. They mobilized the now-famous taxicab army as a last means of defense. Their morale was in danger of being snapped by almost anything. The Germans knew they had the Frenchmen where the hair was short. Now was the psychological time to push home the drive.

Creating Panic

Under cover of darkness they seized the opportunity to throw panic into the hearts of the Frenchmen. They loaded one of their giant dirigibles with ton after ton of deadly explosive and sent it through the blackness to drop its burden of disaster into the homes of the defenseless women and children.

A lone French aviator patrolling the night saw the great monster coming. If she poured her deadly cargo upon the city, death and destruction would reign in the streets, the morale of the people would be broken, and defeat would be inevitable. The Germans would sweep the broken-spirited defenders away before them.

Rowboat vs. Battleship

All these things the Frenchman in his tiny monoplane knew. And he knew, too, that the Zeppelin bristled with machine-guns manned by gunners of deadly accuracy. He was in the position of a man in a rowboat going up against a battleship. Thus he soared about the giant, looking for a point of vulnerability. But there was none.

Still, if the Zeppelin reached its objective the cause of France was lost. It must not do that!

A Brave Deed

The Frenchman determined upon a course which should go down in history as one of the bravest individual deeds in the whole War. He circled his tiny monoplane high above the Zeppelin. Then he dived squarely toward its great gas bag with flaming tracer bullets pouring out ahead of him.

He rushed downward toward the balloon with the wind whistling through his struts and his guns roaring.

He increased the speed of his mad dive without veering to the right or left. Answering fire greeted him from the gun traps on top of the gas bag.

But still he held to his course. His screaming machine with its guns blazing tore headlong into the great framework of the hydrogen-filled gas bags of the great ship. There was the rending crash of wood and steel as the little monoplane ripped its way through the monster. And there was a great blinding white flash of fire as his tracer bullets and the flame of his motor ignited those thousands of feet of the inflammable gas. See Fig. III.

Paris Saved!

Then, like a giant blazing meteor, the fiery mass of wreckage plunged down to earth. There was nothing left of the Frenchman nor of the German crew. It was a glorious sacrifice!

But Paris had been saved!

Now both of you readers can wipe away your tears with your shirt tails and go out and tell the world that there are two different kinds of gas bags. Tell ‘em that you are one and that you’ve just heard about the other.

And don’t get too close to a lighted match, because I’ll have something else to tell you next month.

How the War Crates Flew: Aerial Photography

Link - Posted by David on September 5, 2023 @ 6:00 am in

FROM the pages of the March 1934 number of Sky Fighters:

Editor’s Note: We feel that this magazine has been exceedingly fortunate in securing Lt. Edward McCrae to conduct a technical department each month. It is Lt. Mcrae’s idea to tell us the underlying principles and facts concerning expressions and ideas of air-war terminology. Each month he will enlarge upon some particular statement in the stories of this magazine. Lt. MaCrae is qualified for this work, not only because he was a war pilot, but also because he is the editor of this fine magazine.

Aerial Photography

by Lt. Edward McCrae (Sky Fighters, March 1934)

NOW if you two sad-eyed rum-dums can hold your heads up long enough to listen, I want to smack you in the face with a question. No? Well, you’re gonna get the question anyway. Suppose you flew over some of the enemy’s territory yesterday and got acquainted with it till you could call it by its first name. And then you came along over the same ground today—I mean a mile or so over—and—stop interrupting—and today you saw a lot of trees that must have taken forty years to grow—and suppose those trees weren’t there yesterday?

What’s the Answer?

Well, you sleepy-eyed buzzards, to call you a polite name, you’d be seeing something that was mighty interesting to general headquarters. You’d probably fly over again Saturday afternoon and instead of seeing the trees you’d see nothing but a lot of shell holes.

The answer?

Aerial photography! One of the most important branches of the flying service.

Put a couple of ten-gallon funnels in your ears to let the wisdom run in to a place where there’s plenty of room for it, and I’ll tell you about a trip made by one of the war’s outstanding heroes, who must be nameless on account of his becoming modesty. We got orders from G.H.Q., which is the title of the brass hats hired to do nothing but think up crazy ideas to make flyers uncomfortable. They wanted photographs of what we will call sector D-7, because that was the way it was identified on the big maps. So naturally they called on me to do it.

I Get a Camera

I was playing stable boy and jockey to a Sopwith. The so-called experts from the photography shack brought me out a camera—open your eyes long enough to look at the picture in Figure 1, will you? Okay, go back to sleep. I fitted the camera into the conical—not comical—slot it goes into and we climbed to about seven thousand feet, not going any higher because the light was bad.

Now, the sector we wanted to catch had a road bisecting it. I had another pilot at the stick so I could operate the camera (because the brass hats wanted to be sure the pictures were good!) So I had told my pilot to start and follow the road to the end of the sector, then come back parallel to it on the left, then go forward to the left of that, and back again to the left of that. Just like a man plowing a field.

It’s Foolproof

The camera is claimed to be foolproof. Not that that mattered to me, understand. You’ve got eighteen plates stacked in a changing box over the shutter. You have a loading handle which you slide backward and forward and the first plate falls into position. When you get over the spot you’re ready to shoot you pull a string. You tell the spot by looking at the previous pictures that were taken of the same ground.

When the string is pulled you’ve got a picture of a big area over a mile below. You yank the loading handle and the camera ejects the exposed plate into a changing-box underneath and the number two plate falls into place in the camera. You keep up this simple operation until you’ve shot all your plates.

Did I say simple—you simpletons? You’ve got plenty to do and to worry about. You have to get your positions, figure out when the ship is flying dead level so you won’t shoot a picture off to the right or left, and you’ve got to figure out the proper intervals of time between shots, so you’ll cover all the territory. Open your eyes well and look at Figure 2 to see what the ground looks like.

And then another small item might be mentioned in passing. The antiaircraft guns. Those little darlings just dearly love to pop away at you as soon as you are over the German lines.

And here’s the fun in the game of “picture, picture, who’ll get the picture.” You can’t afford to dodge their cute little bursting shells because you have to take all your pictures in a straight line and from the same altitude or they will be worthless. You have to fly straight, count five, pull the string, jerk the reloading lever, count five, pull the string, jerk the reloading lever—and you keep repeating that until I tell you to stop.

Overlapping Pictures

You have to make the pictures so they will overlap on all sides, like they do in Figure 3, then the brass hats put them together to form one big picture of the sector. So, thickheads, if you shot one here and another there, it would be as hard to match them up as a jig-saw puzzle.

Anyway, we get the five pictures on the first spurt across the line, nose her up and over into an Immelmann turn and start on the return voyage. But now we’re having the wind on our tail and are hitting it off at a hundred and fifty miles an hour. And so I’ve got to pull the string, count two, yank the lever, pull the string, and so forth. You can get it through your thick skulls, can’t you, that since we’re going faster, we have to work the camera faster to get the same number of pictures per mile? Good!

We Get a Break

But we get a break on this first return trip. We make a harder target for the archies who are sure burning up a lot of Herr Kaiser’s ammunition. Shells are bursting all around us. Not that I care, but I feel sorry for the pilot up in front. I bet he’s scared to death.

Whew! We’re back over our own lines. That’s great, except we’ve got to make another round trip to get the sector covered.

We act like we’re headed for home and the archies decide to call it a day and go home for a glass of beer. We’ve fooled ’em.

Then They Get Mad

Now we whip around and start plowing another furrow of pictures. The archie crew look kind of cheap at being fooled. Then they get mad and red in the face and call us a lot of schwein and ach du leibers and start sending us bursting greetings by the tons.

Well, I don’t like to talk about myself in too much detail, so I’ll just say that we accomplished the impossible and got back from that round trip.

The O.C. meets us as we settle gently to earth on one wheel and one propeller blade and rushes the camera to the dark room, where the experts develop the plates in about twenty minutes.

Now for Those Trees

Now if you can remember as far back as the beginning of this serious and highly technical discourse you might get some idea of what I meant. About those forty-year-old trees that grew up from acorns overnight, like Jack and the beanstalk.

Yes, they were camouflage to cover big guns that were being moved into place in the sector, but you’re both liars. You didn’t know that until I told you.

I have wasted my time giving you just one of many uses for aerial photography. Thousands of photographs were taken every day, and they enabled the generals to be prepared for attacks that otherwise would have surprised them. They gave exact information as to distance to strategic targets, and told when those targets, ammunition dumps, rail heads and concentration points were effectively incapacitated, as the big-word artists would have it.

Formed a War History

They formed a complete history of the war. They were studied and argued over, they solved impenetrable mysteries. There were thousands of pictures of every conceivable angle of the war. They’ll be valuable in the next war—which is headed this way faster’n a jack rabbit.

So now you two Rip Van Winkles can wake up long enough to try to make up your minds whether you want to shoot the enemy with a Kodak or a machine-gun during the next war. The photographic branch has gone forward just like the rest of aviation in the recent years and it’s going to be even more important.

Now you stay awake a while, while I sleep.